Alert button
Picture for Yao Zhao

Yao Zhao

Alert button


On What Basis? Predicting Text Preference Via Structured Comparative Reasoning

Nov 14, 2023
Jing Nathan Yan, Tianqi Liu, Justin T Chiu, Jiaming Shen, Zhen Qin, Yue Yu, Yao Zhao, Charu Lakshmanan, Yair Kurzion, Alexander M. Rush, Jialu Liu, Michael Bendersky

Comparative reasoning plays a crucial role in text preference prediction; however, large language models (LLMs) often demonstrate inconsistencies in their reasoning. While approaches like Chain-of-Thought improve accuracy in many other settings, they struggle to consistently distinguish the similarities and differences of complex texts. We introduce SC, a prompting approach that predicts text preferences by generating structured intermediate comparisons. SC begins by proposing aspects of comparison, followed by generating textual comparisons under each aspect. We select consistent comparisons with a pairwise consistency comparator that ensures each aspect's comparisons clearly distinguish differences between texts, significantly reducing hallucination and improving consistency. Our comprehensive evaluations across various NLP tasks, including summarization, retrieval, and automatic rating, demonstrate that SC equips LLMs to achieve state-of-the-art performance in text preference prediction.

Viaarxiv icon

On the Opportunities of Green Computing: A Survey

Nov 09, 2023
You Zhou, Xiujing Lin, Xiang Zhang, Maolin Wang, Gangwei Jiang, Huakang Lu, Yupeng Wu, Kai Zhang, Zhe Yang, Kehang Wang, Yongduo Sui, Fengwei Jia, Zuoli Tang, Yao Zhao, Hongxuan Zhang, Tiannuo Yang, Weibo Chen, Yunong Mao, Yi Li, De Bao, Yu Li, Hongrui Liao, Ting Liu, Jingwen Liu, Jinchi Guo, Xiangyu Zhao, Ying WEI, Hong Qian, Qi Liu, Xiang Wang, Wai Kin, Chan, Chenliang Li, Yusen Li, Shiyu Yang, Jining Yan, Chao Mou, Shuai Han, Wuxia Jin, Guannan Zhang, Xiaodong Zeng

Figure 1 for On the Opportunities of Green Computing: A Survey
Figure 2 for On the Opportunities of Green Computing: A Survey
Figure 3 for On the Opportunities of Green Computing: A Survey
Figure 4 for On the Opportunities of Green Computing: A Survey

Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades, and is widely used in many areas including computing vision, natural language processing, time-series analysis, speech synthesis, etc. During the age of deep learning, especially with the arise of Large Language Models, a large majority of researchers' attention is paid on pursuing new state-of-the-art (SOTA) results, resulting in ever increasing of model size and computational complexity. The needs for high computing power brings higher carbon emission and undermines research fairness by preventing small or medium-sized research institutions and companies with limited funding in participating in research. To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic. In this survey, we give a systematic overview of the technologies used in Green Computing. We propose the framework of Green Computing and devide it into four key components: (1) Measures of Greenness, (2) Energy-Efficient AI, (3) Energy-Efficient Computing Systems and (4) AI Use Cases for Sustainability. For each components, we discuss the research progress made and the commonly used techniques to optimize the AI efficiency. We conclude that this new research direction has the potential to address the conflicts between resource constraints and AI development. We encourage more researchers to put attention on this direction and make AI more environmental friendly.

* 113 pages, 18 figures 
Viaarxiv icon

RIO: A Benchmark for Reasoning Intention-Oriented Objects in Open Environments

Oct 26, 2023
Mengxue Qu, Yu Wu, Wu Liu, Xiaodan Liang, Jingkuan Song, Yao Zhao, Yunchao Wei

Intention-oriented object detection aims to detect desired objects based on specific intentions or requirements. For instance, when we desire to "lie down and rest", we instinctively seek out a suitable option such as a "bed" or a "sofa" that can fulfill our needs. Previous work in this area is limited either by the number of intention descriptions or by the affordance vocabulary available for intention objects. These limitations make it challenging to handle intentions in open environments effectively. To facilitate this research, we construct a comprehensive dataset called Reasoning Intention-Oriented Objects (RIO). In particular, RIO is specifically designed to incorporate diverse real-world scenarios and a wide range of object categories. It offers the following key features: 1) intention descriptions in RIO are represented as natural sentences rather than a mere word or verb phrase, making them more practical and meaningful; 2) the intention descriptions are contextually relevant to the scene, enabling a broader range of potential functionalities associated with the objects; 3) the dataset comprises a total of 40,214 images and 130,585 intention-object pairs. With the proposed RIO, we evaluate the ability of some existing models to reason intention-oriented objects in open environments.

* NeurIPS 2023 D&B accepted. See our project page for more details: 
Viaarxiv icon

Unleashing the potential of GNNs via Bi-directional Knowledge Transfer

Oct 26, 2023
Shuai Zheng, Zhizhe Liu, Zhenfeng Zhu, Xingxing Zhang, Jianxin Li, Yao Zhao

Based on the message-passing paradigm, there has been an amount of research proposing diverse and impressive feature propagation mechanisms to improve the performance of GNNs. However, less focus has been put on feature transformation, another major operation of the message-passing framework. In this paper, we first empirically investigate the performance of the feature transformation operation in several typical GNNs. Unexpectedly, we notice that GNNs do not completely free up the power of the inherent feature transformation operation. By this observation, we propose the Bi-directional Knowledge Transfer (BiKT), a plug-and-play approach to unleash the potential of the feature transformation operations without modifying the original architecture. Taking the feature transformation operation as a derived representation learning model that shares parameters with the original GNN, the direct prediction by this model provides a topological-agnostic knowledge feedback that can further instruct the learning of GNN and the feature transformations therein. On this basis, BiKT not only allows us to acquire knowledge from both the GNN and its derived model but promotes each other by injecting the knowledge into the other. In addition, a theoretical analysis is further provided to demonstrate that BiKT improves the generalization bound of the GNNs from the perspective of domain adaption. An extensive group of experiments on up to 7 datasets with 5 typical GNNs demonstrates that BiKT brings up to 0.5% - 4% performance gain over the original GNN, which means a boosted GNN is obtained. Meanwhile, the derived model also shows a powerful performance to compete with or even surpass the original GNN, enabling us to flexibly apply it independently to some other specific downstream tasks.

* 13 pages, 9 figures 
Viaarxiv icon

WeatherDepth: Curriculum Contrastive Learning for Self-Supervised Depth Estimation under Adverse Weather Conditions

Oct 09, 2023
Jiyuan Wang, Chunyu Lin, Lang Nie, Shujun Huang, Yao Zhao, Xing Pan, Rui Ai

Depth estimation models have shown promising performance on clear scenes but fail to generalize to adverse weather conditions due to illumination variations, weather particles, etc. In this paper, we propose WeatherDepth, a self-supervised robust depth estimation model with curriculum contrastive learning, to tackle performance degradation in complex weather conditions. Concretely, we first present a progressive curriculum learning scheme with three simple-to-complex curricula to gradually adapt the model from clear to relative adverse, and then to adverse weather scenes. It encourages the model to gradually grasp beneficial depth cues against the weather effect, yielding smoother and better domain adaption. Meanwhile, to prevent the model from forgetting previous curricula, we integrate contrastive learning into different curricula. Drawn the reference knowledge from the previous course, our strategy establishes a depth consistency constraint between different courses towards robust depth estimation in diverse weather. Besides, to reduce manual intervention and better adapt to different models, we designed an adaptive curriculum scheduler to automatically search for the best timing for course switching. In the experiment, the proposed solution is proven to be easily incorporated into various architectures and demonstrates state-of-the-art (SoTA) performance on both synthetic and real weather datasets.

Viaarxiv icon

Learning Mask-aware CLIP Representations for Zero-Shot Segmentation

Sep 30, 2023
Siyu Jiao, Yunchao Wei, Yaowei Wang, Yao Zhao, Humphrey Shi

Figure 1 for Learning Mask-aware CLIP Representations for Zero-Shot Segmentation
Figure 2 for Learning Mask-aware CLIP Representations for Zero-Shot Segmentation
Figure 3 for Learning Mask-aware CLIP Representations for Zero-Shot Segmentation
Figure 4 for Learning Mask-aware CLIP Representations for Zero-Shot Segmentation

Recently, pre-trained vision-language models have been increasingly used to tackle the challenging zero-shot segmentation task. Typical solutions follow the paradigm of first generating mask proposals and then adopting CLIP to classify them. To maintain the CLIP's zero-shot transferability, previous practices favour to freeze CLIP during training. However, in the paper, we reveal that CLIP is insensitive to different mask proposals and tends to produce similar predictions for various mask proposals of the same image. This insensitivity results in numerous false positives when classifying mask proposals. This issue mainly relates to the fact that CLIP is trained with image-level supervision. To alleviate this issue, we propose a simple yet effective method, named Mask-aware Fine-tuning (MAFT). Specifically, Image-Proposals CLIP Encoder (IP-CLIP Encoder) is proposed to handle arbitrary numbers of image and mask proposals simultaneously. Then, mask-aware loss and self-distillation loss are designed to fine-tune IP-CLIP Encoder, ensuring CLIP is responsive to different mask proposals while not sacrificing transferability. In this way, mask-aware representations can be easily learned to make the true positives stand out. Notably, our solution can seamlessly plug into most existing methods without introducing any new parameters during the fine-tuning process. We conduct extensive experiments on the popular zero-shot benchmarks. With MAFT, the performance of the state-of-the-art methods is promoted by a large margin: 50.4% (+ 8.2%) on COCO, 81.8% (+ 3.2%) on Pascal-VOC, and 8.7% (+4.3%) on ADE20K in terms of mIoU for unseen classes. The code is available at

* NeurIPS 2023 
Viaarxiv icon

IBVC: Interpolation-driven B-frame Video Compression

Sep 25, 2023
Meiqin Liu, Chenming Xu, Chao Yao, Weisi Lin, Yao Zhao

Figure 1 for IBVC: Interpolation-driven B-frame Video Compression
Figure 2 for IBVC: Interpolation-driven B-frame Video Compression
Figure 3 for IBVC: Interpolation-driven B-frame Video Compression
Figure 4 for IBVC: Interpolation-driven B-frame Video Compression

Learned B-frame video compression aims to adopt bi-directional motion estimation and motion compensation (MEMC) coding for middle frame reconstruction. However, previous learned approaches often directly extend neural P-frame codecs to B-frame relying on bi-directional optical-flow estimation or video frame interpolation. They suffer from inaccurate quantized motions and inefficient motion compensation. To address these issues, we propose a simple yet effective structure called Interpolation-driven B-frame Video Compression (IBVC). Our approach only involves two major operations: video frame interpolation and artifact reduction compression. IBVC introduces a bit-rate free MEMC based on interpolation, which avoids optical-flow quantization and additional compression distortions. Later, to reduce duplicate bit-rate consumption and focus on unaligned artifacts, a residual guided masking encoder is deployed to adaptively select the meaningful contexts with interpolated multi-scale dependencies. In addition, a conditional spatio-temporal decoder is proposed to eliminate location errors and artifacts instead of using MEMC coding in other methods. The experimental results on B-frame coding demonstrate that IBVC has significant improvements compared to the relevant state-of-the-art methods. Meanwhile, our approach can save bit rates compared with the random access (RA) configuration of H.266 (VTM). The code will be available at

* Submitted to IEEE TCSVT 
Viaarxiv icon

Unified Frequency-Assisted Transformer Framework for Detecting and Grounding Multi-Modal Manipulation

Sep 18, 2023
Huan Liu, Zichang Tan, Qiang Chen, Yunchao Wei, Yao Zhao, Jingdong Wang

Figure 1 for Unified Frequency-Assisted Transformer Framework for Detecting and Grounding Multi-Modal Manipulation
Figure 2 for Unified Frequency-Assisted Transformer Framework for Detecting and Grounding Multi-Modal Manipulation
Figure 3 for Unified Frequency-Assisted Transformer Framework for Detecting and Grounding Multi-Modal Manipulation
Figure 4 for Unified Frequency-Assisted Transformer Framework for Detecting and Grounding Multi-Modal Manipulation

Detecting and grounding multi-modal media manipulation (DGM^4) has become increasingly crucial due to the widespread dissemination of face forgery and text misinformation. In this paper, we present the Unified Frequency-Assisted transFormer framework, named UFAFormer, to address the DGM^4 problem. Unlike previous state-of-the-art methods that solely focus on the image (RGB) domain to describe visual forgery features, we additionally introduce the frequency domain as a complementary viewpoint. By leveraging the discrete wavelet transform, we decompose images into several frequency sub-bands, capturing rich face forgery artifacts. Then, our proposed frequency encoder, incorporating intra-band and inter-band self-attentions, explicitly aggregates forgery features within and across diverse sub-bands. Moreover, to address the semantic conflicts between image and frequency domains, the forgery-aware mutual module is developed to further enable the effective interaction of disparate image and frequency features, resulting in aligned and comprehensive visual forgery representations. Finally, based on visual and textual forgery features, we propose a unified decoder that comprises two symmetric cross-modal interaction modules responsible for gathering modality-specific forgery information, along with a fusing interaction module for aggregation of both modalities. The proposed unified decoder formulates our UFAFormer as a unified framework, ultimately simplifying the overall architecture and facilitating the optimization process. Experimental results on the DGM^4 dataset, containing several perturbations, demonstrate the superior performance of our framework compared to previous methods, setting a new benchmark in the field.

Viaarxiv icon