Alert button
Picture for Philip Torr

Philip Torr

Alert button

Label Delay in Continual Learning

Dec 01, 2023
Botos Csaba, Wenxuan Zhang, Matthias Müller, Ser-Nam Lim, Mohamed Elhoseiny, Philip Torr, Adel Bibi

Online continual learning, the process of training models on streaming data, has gained increasing attention in recent years. However, a critical aspect often overlooked is the label delay, where new data may not be labeled due to slow and costly annotation processes. We introduce a new continual learning framework with explicit modeling of the label delay between data and label streams over time steps. In each step, the framework reveals both unlabeled data from the current time step $t$ and labels delayed with $d$ steps, from the time step $t-d$. In our extensive experiments amounting to 1060 GPU days, we show that merely augmenting the computational resources is insufficient to tackle this challenge. Our findings underline a notable performance decline when solely relying on labeled data when the label delay becomes significant. More surprisingly, when using state-of-the-art SSL and TTA techniques to utilize the newer, unlabeled data, they fail to surpass the performance of a na\"ive method that simply trains on the delayed supervised stream. To this end, we introduce a simple, efficient baseline that rehearses from the labeled memory samples that are most similar to the new unlabeled samples. This method bridges the accuracy gap caused by label delay without significantly increasing computational complexity. We show experimentally that our method is the least affected by the label delay factor and in some cases successfully recovers the accuracy of the non-delayed counterpart. We conduct various ablations and sensitivity experiments, demonstrating the effectiveness of our approach.

* 17 pages, 12 figures 
Viaarxiv icon

Improving Adversarial Transferability via Model Alignment

Nov 30, 2023
Avery Ma, Amir-massoud Farahmand, Yangchen Pan, Philip Torr, Jindong Gu

Neural networks are susceptible to adversarial perturbations that are transferable across different models. In this paper, we introduce a novel model alignment technique aimed at improving a given source model's ability in generating transferable adversarial perturbations. During the alignment process, the parameters of the source model are fine-tuned to minimize an alignment loss. This loss measures the divergence in the predictions between the source model and another, independently trained model, referred to as the witness model. To understand the effect of model alignment, we conduct a geometric anlaysis of the resulting changes in the loss landscape. Extensive experiments on the ImageNet dataset, using a variety of model architectures, demonstrate that perturbations generated from aligned source models exhibit significantly higher transferability than those from the original source model.

Viaarxiv icon

Understanding and Improving In-Context Learning on Vision-language Models

Nov 29, 2023
Shuo Chen, Zhen Han, Bailan He, Mark Buckley, Philip Torr, Volker Tresp, Jindong Gu

Recently, in-context learning (ICL) on large language models (LLMs) has received great attention, and this technique can also be applied to vision-language models (VLMs) built upon LLMs. These VLMs can respond to queries by conditioning responses on a series of multimodal demonstrations, which comprise images, queries, and answers. Though ICL has been extensively studied on LLMs, its research on VLMs remains limited. The inclusion of additional visual information in the demonstrations motivates the following research questions: which of the two modalities in the demonstration is more significant? How can we select effective multimodal demonstrations to enhance ICL performance? This study investigates the significance of both visual and language information. Our findings indicate that ICL in VLMs is predominantly driven by the textual information in the demonstrations whereas the visual information in the demonstrations barely affects the ICL performance. Subsequently, we provide an understanding of the findings by analyzing the model information flow and comparing model inner states given different ICL settings. Motivated by our analysis, we propose a simple yet effective approach, termed Mixed Modality In-Context Example Selection (MMICES), which considers both visual and language modalities when selecting demonstrations and shows better ICL performance. Extensive experiments are conducted to support our findings, understanding, and improvement of the ICL performance of VLMs.

* 8 pages, 10 figures 
Viaarxiv icon

Self-Discovering Interpretable Diffusion Latent Directions for Responsible Text-to-Image Generation

Nov 28, 2023
Hang Li, Chengzhi Shen, Philip Torr, Volker Tresp, Jindong Gu

Diffusion-based models have gained significant popularity for text-to-image generation due to their exceptional image-generation capabilities. A risk with these models is the potential generation of inappropriate content, such as biased or harmful images. However, the underlying reasons for generating such undesired content from the perspective of the diffusion model's internal representation remain unclear. Previous work interprets vectors in an interpretable latent space of diffusion models as semantic concepts. However, existing approaches cannot discover directions for arbitrary concepts, such as those related to inappropriate concepts. In this work, we propose a novel self-supervised approach to find interpretable latent directions for a given concept. With the discovered vectors, we further propose a simple approach to mitigate inappropriate generation. Extensive experiments have been conducted to verify the effectiveness of our mitigation approach, namely, for fair generation, safe generation, and responsible text-enhancing generation.

Viaarxiv icon

Managing AI Risks in an Era of Rapid Progress

Oct 26, 2023
Yoshua Bengio, Geoffrey Hinton, Andrew Yao, Dawn Song, Pieter Abbeel, Yuval Noah Harari, Ya-Qin Zhang, Lan Xue, Shai Shalev-Shwartz, Gillian Hadfield, Jeff Clune, Tegan Maharaj, Frank Hutter, Atılım Güneş Baydin, Sheila McIlraith, Qiqi Gao, Ashwin Acharya, David Krueger, Anca Dragan, Philip Torr, Stuart Russell, Daniel Kahneman, Jan Brauner, Sören Mindermann

In this short consensus paper, we outline risks from upcoming, advanced AI systems. We examine large-scale social harms and malicious uses, as well as an irreversible loss of human control over autonomous AI systems. In light of rapid and continuing AI progress, we propose priorities for AI R&D and governance.

Viaarxiv icon

A Survey on Transferability of Adversarial Examples across Deep Neural Networks

Oct 26, 2023
Jindong Gu, Xiaojun Jia, Pau de Jorge, Wenqain Yu, Xinwei Liu, Avery Ma, Yuan Xun, Anjun Hu, Ashkan Khakzar, Zhijiang Li, Xiaochun Cao, Philip Torr

The emergence of Deep Neural Networks (DNNs) has revolutionized various domains, enabling the resolution of complex tasks spanning image recognition, natural language processing, and scientific problem-solving. However, this progress has also exposed a concerning vulnerability: adversarial examples. These crafted inputs, imperceptible to humans, can manipulate machine learning models into making erroneous predictions, raising concerns for safety-critical applications. An intriguing property of this phenomenon is the transferability of adversarial examples, where perturbations crafted for one model can deceive another, often with a different architecture. This intriguing property enables "black-box" attacks, circumventing the need for detailed knowledge of the target model. This survey explores the landscape of the adversarial transferability of adversarial examples. We categorize existing methodologies to enhance adversarial transferability and discuss the fundamental principles guiding each approach. While the predominant body of research primarily concentrates on image classification, we also extend our discussion to encompass other vision tasks and beyond. Challenges and future prospects are discussed, highlighting the importance of fortifying DNNs against adversarial vulnerabilities in an evolving landscape.

Viaarxiv icon

Real-Fake: Effective Training Data Synthesis Through Distribution Matching

Oct 16, 2023
Jianhao Yuan, Jie Zhang, Shuyang Sun, Philip Torr, Bo Zhao

Synthetic training data has gained prominence in numerous learning tasks and scenarios, offering advantages such as dataset augmentation, generalization evaluation, and privacy preservation. Despite these benefits, the efficiency of synthetic data generated by current methodologies remains inferior when training advanced deep models exclusively, limiting its practical utility. To address this challenge, we analyze the principles underlying training data synthesis for supervised learning and elucidate a principled theoretical framework from the distribution-matching perspective that explicates the mechanisms governing synthesis efficacy. Through extensive experiments, we demonstrate the effectiveness of our synthetic data across diverse image classification tasks, both as a replacement for and augmentation to real datasets, while also benefits challenging tasks such as out-of-distribution generalization and privacy preservation.

* Code released at ( 
Viaarxiv icon

PoRF: Pose Residual Field for Accurate Neural Surface Reconstruction

Oct 12, 2023
Jia-Wang Bian, Wenjing Bian, Victor Adrian Prisacariu, Philip Torr

Figure 1 for PoRF: Pose Residual Field for Accurate Neural Surface Reconstruction
Figure 2 for PoRF: Pose Residual Field for Accurate Neural Surface Reconstruction
Figure 3 for PoRF: Pose Residual Field for Accurate Neural Surface Reconstruction
Figure 4 for PoRF: Pose Residual Field for Accurate Neural Surface Reconstruction

Neural surface reconstruction is sensitive to the camera pose noise, even if state-of-the-art pose estimators like COLMAP or ARKit are used. More importantly, existing Pose-NeRF joint optimisation methods have struggled to improve pose accuracy in challenging real-world scenarios. To overcome the challenges, we introduce the pose residual field (\textbf{PoRF}), a novel implicit representation that uses an MLP for regressing pose updates. This is more robust than the conventional pose parameter optimisation due to parameter sharing that leverages global information over the entire sequence. Furthermore, we propose an epipolar geometry loss to enhance the supervision that leverages the correspondences exported from COLMAP results without the extra computational overhead. Our method yields promising results. On the DTU dataset, we reduce the rotation error by 78\% for COLMAP poses, leading to the decreased reconstruction Chamfer distance from 3.48mm to 0.85mm. On the MobileBrick dataset that contains casually captured unbounded 360-degree videos, our method refines ARKit poses and improves the reconstruction F1 score from 69.18 to 75.67, outperforming that with the dataset provided ground-truth pose (75.14). These achievements demonstrate the efficacy of our approach in refining camera poses and improving the accuracy of neural surface reconstruction in real-world scenarios.

* Under review 
Viaarxiv icon

Interpreting Reward Models in RLHF-Tuned Language Models Using Sparse Autoencoders

Oct 12, 2023
Luke Marks, Amir Abdullah, Luna Mendez, Rauno Arike, Philip Torr, Fazl Barez

Large language models (LLMs) aligned to human preferences via reinforcement learning from human feedback (RLHF) underpin many commercial applications. However, how RLHF impacts LLM internals remains opaque. We propose a novel method to interpret learned reward functions in RLHF-tuned LLMs using sparse autoencoders. Our approach trains autoencoder sets on activations from a base LLM and its RLHF-tuned version. By comparing autoencoder hidden spaces, we identify unique features that reflect the accuracy of the learned reward model. To quantify this, we construct a scenario where the tuned LLM learns token-reward mappings to maximize reward. This is the first application of sparse autoencoders for interpreting learned rewards and broadly inspecting reward learning in LLMs. Our method provides an abstract approximation of reward integrity. This presents a promising technique for ensuring alignment between specified objectives and model behaviors.

Viaarxiv icon