Recent advancements in data-driven task-oriented dialogue systems (ToDs) struggle with incremental learning due to computational constraints and time-consuming issues. Continual Learning (CL) attempts to solve this by avoiding intensive pre-training, but it faces the problem of catastrophic forgetting (CF). While generative-based rehearsal CL methods have made significant strides, generating pseudo samples that accurately reflect the underlying task-specific distribution is still a challenge. In this paper, we present Dirichlet Continual Learning (DCL), a novel generative-based rehearsal strategy for CL. Unlike the traditionally used Gaussian latent variable in the Conditional Variational Autoencoder (CVAE), DCL leverages the flexibility and versatility of the Dirichlet distribution to model the latent prior variable. This enables it to efficiently capture sentence-level features of previous tasks and effectively guide the generation of pseudo samples. In addition, we introduce Jensen-Shannon Knowledge Distillation (JSKD), a robust logit-based knowledge distillation method that enhances knowledge transfer during pseudo sample generation. Our experiments confirm the efficacy of our approach in both intent detection and slot-filling tasks, outperforming state-of-the-art methods.
Robot-assisted surgery has made significant progress, with instrument segmentation being a critical factor in surgical intervention quality. It serves as the building block to facilitate surgical robot navigation and surgical education for the next generation of operating intelligence. Although existing methods have achieved accurate instrument segmentation results, they simultaneously generate segmentation masks for all instruments, without the capability to specify a target object and allow an interactive experience. This work explores a new task of Referring Surgical Video Instrument Segmentation (RSVIS), which aims to automatically identify and segment the corresponding surgical instruments based on the given language expression. To achieve this, we devise a novel Video-Instrument Synergistic Network (VIS-Net) to learn both video-level and instrument-level knowledge to boost performance, while previous work only used video-level information. Meanwhile, we design a Graph-based Relation-aware Module (GRM) to model the correlation between multi-modal information (i.e., textual description and video frame) to facilitate the extraction of instrument-level information. We are also the first to produce two RSVIS datasets to promote related research. Our method is verified on these datasets, and experimental results exhibit that the VIS-Net can significantly outperform existing state-of-the-art referring segmentation methods. Our code and our datasets will be released upon the publication of this work.
Recent increase in wildfires worldwide has led to the need for real-time fire nowcasting. Physics-driven models, such as cellular automata and computational fluid dynamics can provide high-fidelity fire spread simulations but they are computationally expensive and time-consuming. Much effort has been put into developing machine learning models for fire prediction. However, these models are often region-specific and require a substantial quantity of simulation data for training purpose. This results in a significant amount of computational effort for different ecoregions. In this work, a generative model is proposed using a three-dimensional Vector-Quantized Variational Autoencoders to generate spatial-temporal sequences of unseen wildfire burned areas in a given ecoregion. The model is tested in the ecoregion of a recent massive wildfire event in California, known as the Chimney fire. Numerical results show that the model succeed in generating coherent and structured fire scenarios, taking into account the impact from geophysical variables, such as vegetation and slope. Generated data are also used to train a surrogate model for predicting wildfire dissemination, which has been tested on both simulation data and the real Chimney fire event.
Recent studies have demonstrated promising performance of ChatGPT and GPT-4 on several medical domain tasks. However, none have assessed its performance using a large-scale real-world electronic health record database, nor have evaluated its utility in providing clinical diagnostic assistance for patients across a full range of disease presentation. We performed two analyses using ChatGPT and GPT-4, one to identify patients with specific medical diagnoses using a real-world large electronic health record database and the other, in providing diagnostic assistance to healthcare workers in the prospective evaluation of hypothetical patients. Our results show that GPT-4 across disease classification tasks with chain of thought and few-shot prompting can achieve performance as high as 96% F1 scores. For patient assessment, GPT-4 can accurately diagnose three out of four times. However, there were mentions of factually incorrect statements, overlooking crucial medical findings, recommendations for unnecessary investigations and overtreatment. These issues coupled with privacy concerns, make these models currently inadequate for real world clinical use. However, limited data and time needed for prompt engineering in comparison to configuration of conventional machine learning workflows highlight their potential for scalability across healthcare applications.
In the era of extensive intersection between art and Artificial Intelligence (AI), such as image generation and fiction co-creation, AI for music remains relatively nascent, particularly in music understanding. This is evident in the limited work on deep music representations, the scarcity of large-scale datasets, and the absence of a universal and community-driven benchmark. To address this issue, we introduce the Music Audio Representation Benchmark for universaL Evaluation, termed MARBLE. It aims to provide a benchmark for various Music Information Retrieval (MIR) tasks by defining a comprehensive taxonomy with four hierarchy levels, including acoustic, performance, score, and high-level description. We then establish a unified protocol based on 14 tasks on 8 public-available datasets, providing a fair and standard assessment of representations of all open-sourced pre-trained models developed on music recordings as baselines. Besides, MARBLE offers an easy-to-use, extendable, and reproducible suite for the community, with a clear statement on copyright issues on datasets. Results suggest recently proposed large-scale pre-trained musical language models perform the best in most tasks, with room for further improvement. The leaderboard and toolkit repository are published at https://marble-bm.shef.ac.uk to promote future music AI research.
Self-supervised learning (SSL) has shown promising results in various speech and natural language processing applications. However, its efficacy in music information retrieval (MIR) still remains largely unexplored. While previous SSL models pre-trained on music recordings may have been mostly closed-sourced, recent speech models such as wav2vec2.0 have shown promise in music modelling. Nevertheless, research exploring the effectiveness of applying speech SSL models to music recordings has been limited. We explore the music adaption of SSL with two distinctive speech-related models, data2vec1.0 and Hubert, and refer to them as music2vec and musicHuBERT, respectively. We train $12$ SSL models with 95M parameters under various pre-training configurations and systematically evaluate the MIR task performances with 13 different MIR tasks. Our findings suggest that training with music data can generally improve performance on MIR tasks, even when models are trained using paradigms designed for speech. However, we identify the limitations of such existing speech-oriented designs, especially in modelling polyphonic information. Based on the experimental results, empirical suggestions are also given for designing future musical SSL strategies and paradigms.
We introduce LyricWhiz, a robust, multilingual, and zero-shot automatic lyrics transcription method achieving state-of-the-art performance on various lyrics transcription datasets, even in challenging genres such as rock and metal. Our novel, training-free approach utilizes Whisper, a weakly supervised robust speech recognition model, and GPT-4, today's most performant chat-based large language model. In the proposed method, Whisper functions as the "ear" by transcribing the audio, while GPT-4 serves as the "brain," acting as an annotator with a strong performance for contextualized output selection and correction. Our experiments show that LyricWhiz significantly reduces Word Error Rate compared to existing methods in English and can effectively transcribe lyrics across multiple languages. Furthermore, we use LyricWhiz to create the first publicly available, large-scale, multilingual lyrics transcription dataset with a CC-BY-NC-SA copyright license, based on MTG-Jamendo, and offer a human-annotated subset for noise level estimation and evaluation. We anticipate that our proposed method and dataset will advance the development of multilingual lyrics transcription, a challenging and emerging task.
Self-supervised learning (SSL) has recently emerged as a promising paradigm for training generalisable models on large-scale data in the fields of vision, text, and speech. Although SSL has been proven effective in speech and audio, its application to music audio has yet to be thoroughly explored. This is primarily due to the distinctive challenges associated with modelling musical knowledge, particularly its tonal and pitched characteristics of music. To address this research gap, we propose an acoustic Music undERstanding model with large-scale self-supervised Training (MERT), which incorporates teacher models to provide pseudo labels in the masked language modelling (MLM) style acoustic pre-training. In our exploration, we identified a superior combination of teacher models, which outperforms conventional speech and audio approaches in terms of performance. This combination includes an acoustic teacher based on Residual Vector Quantization - Variational AutoEncoder (RVQ-VAE) and a musical teacher based on the Constant-Q Transform (CQT). These teachers effectively guide our student model, a BERT-style transformer encoder, to better model music audio. In addition, we introduce an in-batch noise mixture augmentation to enhance the representation robustness. Furthermore, we explore a wide range of settings to overcome the instability in acoustic language model pre-training, which allows our designed paradigm to scale from 95M to 330M parameters. Experimental results indicate that our model can generalise and perform well on 14 music understanding tasks and attains state-of-the-art (SOTA) overall scores. The code and models are online: https://github.com/yizhilll/MERT.