The integration of visual inputs with large language models (LLMs) has led to remarkable advancements in multi-modal capabilities, giving rise to visual large language models (VLLMs). However, effectively harnessing VLLMs for intricate visual perception tasks remains a challenge. In this paper, we present a novel end-to-end framework named PerceptionGPT, which efficiently and effectively equips the VLLMs with visual perception abilities by leveraging the representation power of LLMs' token embedding. Our proposed method treats the token embedding of the LLM as the carrier of spatial information, then leverage lightweight visual task encoders and decoders to perform visual perception tasks (e.g., detection, segmentation). Our approach significantly alleviates the training difficulty suffered by previous approaches that formulate the visual outputs as discrete tokens, and enables achieving superior performance with fewer trainable parameters, less training data and shorted training time. Moreover, as only one token embedding is required to decode the visual outputs, the resulting sequence length during inference is significantly reduced. Consequently, our approach enables accurate and flexible representations, seamless integration of visual perception tasks, and efficient handling of a multiple of visual outputs. We validate the effectiveness and efficiency of our approach through extensive experiments. The results demonstrate significant improvements over previous methods with much fewer trainable parameters and GPU hours, which facilitates future research in enabling LLMs with visual perception abilities.
Foundation models, including Vision Language Models (VLMs) and Large Language Models (LLMs), possess the $generality$ to handle diverse distributions and tasks, which stems from their extensive pre-training datasets. The fine-tuning of foundation models is a common practice to enhance task performance or align the model's behavior with human expectations, allowing them to gain $speciality$. However, the small datasets used for fine-tuning may not adequately cover the diverse distributions and tasks encountered during pre-training. Consequently, the pursuit of speciality during fine-tuning can lead to a loss of {generality} in the model, which is related to catastrophic forgetting (CF) in deep learning. In this study, we demonstrate this phenomenon in both VLMs and LLMs. For instance, fine-tuning VLMs like CLIP on ImageNet results in a loss of generality in handling diverse distributions, and fine-tuning LLMs like Galactica in the medical domain leads to a loss in following instructions and common sense. To address the trade-off between the speciality and generality, we investigate multiple regularization methods from continual learning, the weight averaging method (Wise-FT) from out-of-distributional (OOD) generalization, which interpolates parameters between pre-trained and fine-tuned models, and parameter-efficient fine-tuning methods like Low-Rank Adaptation (LoRA). Our findings show that both continual learning and Wise-ft methods effectively mitigate the loss of generality, with Wise-FT exhibiting the strongest performance in balancing speciality and generality.
In recent years, the field of computer vision has seen significant advancements thanks to the development of large language models (LLMs). These models have enabled more effective and sophisticated interactions between humans and machines, paving the way for novel techniques that blur the lines between human and machine intelligence. In this paper, we introduce a new paradigm for object detection that we call reasoning-based object detection. Unlike conventional object detection methods that rely on specific object names, our approach enables users to interact with the system using natural language instructions, allowing for a higher level of interactivity. Our proposed method, called DetGPT, leverages state-of-the-art multi-modal models and open-vocabulary object detectors to perform reasoning within the context of the user's instructions and the visual scene. This enables DetGPT to automatically locate the object of interest based on the user's expressed desires, even if the object is not explicitly mentioned. For instance, if a user expresses a desire for a cold beverage, DetGPT can analyze the image, identify a fridge, and use its knowledge of typical fridge contents to locate the beverage. This flexibility makes our system applicable across a wide range of fields, from robotics and automation to autonomous driving. Overall, our proposed paradigm and DetGPT demonstrate the potential for more sophisticated and intuitive interactions between humans and machines. We hope that our proposed paradigm and approach will provide inspiration to the community and open the door to more interative and versatile object detection systems. Our project page is launched at detgpt.github.io.
Bilevel optimization has found successful applications in various machine learning problems, including hyper-parameter optimization, data cleaning, and meta-learning. However, its huge computational cost presents a significant challenge for its utilization in large-scale problems. This challenge arises due to the nested structure of the bilevel formulation, where each hyper-gradient computation necessitates a costly inner optimization procedure. To address this issue, we propose a reformulation of bilevel optimization as a minimax problem, effectively decoupling the outer-inner dependency. Under mild conditions, we show these two problems are equivalent. Furthermore, we introduce a multi-stage gradient descent and ascent (GDA) algorithm to solve the resulting minimax problem with convergence guarantees. Extensive experimental results demonstrate that our method outperforms state-of-the-art bilevel methods while significantly reducing the computational cost.
The goal of coreset selection in supervised learning is to produce a weighted subset of data, so that training only on the subset achieves similar performance as training on the entire dataset. Existing methods achieved promising results in resource-constrained scenarios such as continual learning and streaming. However, most of the existing algorithms are limited to traditional machine learning models. A few algorithms that can handle large models adopt greedy search approaches due to the difficulty in solving the discrete subset selection problem, which is computationally costly when coreset becomes larger and often produces suboptimal results. In this work, for the first time we propose a continuous probabilistic bilevel formulation of coreset selection by learning a probablistic weight for each training sample. The overall objective is posed as a bilevel optimization problem, where 1) the inner loop samples coresets and train the model to convergence and 2) the outer loop updates the sample probability progressively according to the model's performance. Importantly, we develop an efficient solver to the bilevel optimization problem via unbiased policy gradient without trouble of implicit differentiation. We provide the convergence property of our training procedure and demonstrate the superiority of our algorithm against various coreset selection methods in various tasks, especially in more challenging label-noise and class-imbalance scenarios.
Distributionally robust optimization (DRO) and invariant risk minimization (IRM) are two popular methods proposed to improve out-of-distribution (OOD) generalization performance of machine learning models. While effective for small models, it has been observed that these methods can be vulnerable to overfitting with large overparameterized models. This work proposes a principled method, \textbf{M}odel \textbf{A}gnostic sam\textbf{PL}e r\textbf{E}weighting (\textbf{MAPLE}), to effectively address OOD problem, especially in overparameterized scenarios. Our key idea is to find an effective reweighting of the training samples so that the standard empirical risk minimization training of a large model on the weighted training data leads to superior OOD generalization performance. The overfitting issue is addressed by considering a bilevel formulation to search for the sample reweighting, in which the generalization complexity depends on the search space of sample weights instead of the model size. We present theoretical analysis in linear case to prove the insensitivity of MAPLE to model size, and empirically verify its superiority in surpassing state-of-the-art methods by a large margin. Code is available at \url{https://github.com/x-zho14/MAPLE}.
The Federated Learning (FL) paradigm is known to face challenges under heterogeneous client data. Local training on non-iid distributed data results in deflected local optimum, which causes the client models drift further away from each other and degrades the aggregated global model's performance. A natural solution is to gather all client data onto the server, such that the server has a global view of the entire data distribution. Unfortunately, this reduces to regular training, which compromises clients' privacy and conflicts with the purpose of FL. In this paper, we put forth an idea to collect and leverage global knowledge on the server without hindering data privacy. We unearth such knowledge from the dynamics of the global model's trajectory. Specifically, we first reserve a short trajectory of global model snapshots on the server. Then, we synthesize a small pseudo dataset such that the model trained on it mimics the dynamics of the reserved global model trajectory. Afterward, the synthesized data is used to help aggregate the deflected clients into the global model. We name our method Dynafed, which enjoys the following advantages: 1) we do not rely on any external on-server dataset, which requires no additional cost for data collection; 2) the pseudo data can be synthesized in early communication rounds, which enables Dynafed to take effect early for boosting the convergence and stabilizing training; 3) the pseudo data only needs to be synthesized once and can be directly utilized on the server to help aggregation in subsequent rounds. Experiments across extensive benchmarks are conducted to showcase the effectiveness of Dynafed. We also provide insights and understanding of the underlying mechanism of our method.
Non-IID data distribution across clients and poisoning attacks are two main challenges in real-world federated learning (FL) systems. While both of them have attracted great research interest with specific strategies developed, no known solution manages to address them in a unified framework. To universally overcome both challenges, we propose SmartFL, a generic approach that optimizes the server-side aggregation process with a small amount of proxy data collected by the service provider itself via a subspace training technique. Specifically, the aggregation weight of each participating client at each round is optimized using the server-collected proxy data, which is essentially the optimization of the global model in the convex hull spanned by client models. Since at each round, the number of tunable parameters optimized on the server side equals the number of participating clients (thus independent of the model size), we are able to train a global model with massive parameters using only a small amount of proxy data (e.g., around one hundred samples). With optimized aggregation, SmartFL ensures robustness against both heterogeneous and malicious clients, which is desirable in real-world FL where either or both problems may occur. We provide theoretical analyses of the convergence and generalization capacity for SmartFL. Empirically, SmartFL achieves state-of-the-art performance on both FL with non-IID data distribution and FL with malicious clients. The source code will be released.
Non-IID data distribution across clients and poisoning attacks are two main challenges in real-world federated learning systems. While both of them have attracted great research interest with specific strategies developed, no known solution manages to address them in a unified framework. To jointly overcome both challenges, we propose SmartFL, a generic approach that optimizes the server-side aggregation process with a small clean server-collected proxy dataset (e.g., around one hundred samples, 0.2% of the dataset) via a subspace training technique. Specifically, the aggregation weight of each participating client at each round is optimized using the server-collected proxy data, which is essentially the optimization of the global model in the convex hull spanned by client models. Since at each round, the number of tunable parameters optimized on the server side equals the number of participating clients (thus independent of the model size), we are able to train a global model with massive parameters using only a small amount of proxy data. We provide theoretical analyses of the convergence and generalization capacity for SmartFL. Empirically, SmartFL achieves state-of-the-art performance on both federated learning with non-IID data distribution and federated learning with malicious clients. The source code will be released.
Nowadays, owing to the superior capacity of the large pre-trained language models (PLM), the PLM-based zero-shot learning has shown promising performances on various natural language processing tasks. There are emerging interests in further exploring the zero-shot learning potential of PLMs. Among them, ZeroGen attempts to purely use PLM to generate data and train a tiny model without relying on any task-specific annotation. Despite its remarkable results, we observe that the synthesized data from PLM contains a significant portion of samples with low quality, overfitting on such data greatly hampers the performance of the trained model and makes it unreliable for deployment.Since no gold data is accessible in zero-shot scenario, it is hard to perform model/data selection to prevent overfitting to the low-quality data. To address this problem, we propose a noise-robust bi-level re-weighting framework which is able to learn the per-sample weights measuring the data quality without requiring any gold data. With the learnt weights, clean subsets of different sizes can then be sampled to train the task model. We theoretically and empirically verify our method is able to construct synthetic dataset with good quality. Our method yeilds a 7.1% relative improvement than ZeroGen on average accuracy across five different established text classification tasks.