Alert button
Picture for Han Zhu

Han Zhu

Alert button

Robust Representation Learning for Unified Online Top-K Recommendation

Oct 24, 2023
Minfang Lu, Yuchen Jiang, Huihui Dong, Qi Li, Ziru Xu, Yuanlin Liu, Lixia Wu, Haoyuan Hu, Han Zhu, Yuning Jiang, Jian Xu, Bo Zheng

Figure 1 for Robust Representation Learning for Unified Online Top-K Recommendation
Figure 2 for Robust Representation Learning for Unified Online Top-K Recommendation
Figure 3 for Robust Representation Learning for Unified Online Top-K Recommendation
Figure 4 for Robust Representation Learning for Unified Online Top-K Recommendation

In large-scale industrial e-commerce, the efficiency of an online recommendation system is crucial in delivering highly relevant item/content advertising that caters to diverse business scenarios. However, most existing studies focus solely on item advertising, neglecting the significance of content advertising. This oversight results in inconsistencies within the multi-entity structure and unfair retrieval. Furthermore, the challenge of retrieving top-k advertisements from multi-entity advertisements across different domains adds to the complexity. Recent research proves that user-entity behaviors within different domains exhibit characteristics of differentiation and homogeneity. Therefore, the multi-domain matching models typically rely on the hybrid-experts framework with domain-invariant and domain-specific representations. Unfortunately, most approaches primarily focus on optimizing the combination mode of different experts, failing to address the inherent difficulty in optimizing the expert modules themselves. The existence of redundant information across different domains introduces interference and competition among experts, while the distinct learning objectives of each domain lead to varying optimization challenges among experts. To tackle these issues, we propose robust representation learning for the unified online top-k recommendation. Our approach constructs unified modeling in entity space to ensure data fairness. The robust representation learning employs domain adversarial learning and multi-view wasserstein distribution learning to learn robust representations. Moreover, the proposed method balances conflicting objectives through the homoscedastic uncertainty weights and orthogonality constraints. Various experiments validate the effectiveness and rationality of our proposed method, which has been successfully deployed online to serve real business scenarios.

* 14 pages, 6 figures, submitted to ICDE 
Viaarxiv icon

Short-term power load forecasting method based on CNN-SAEDN-Res

Sep 02, 2023
Yang Cui, Han Zhu, Yijian Wang, Lu Zhang, Yang Li

In deep learning, the load data with non-temporal factors are difficult to process by sequence models. This problem results in insufficient precision of the prediction. Therefore, a short-term load forecasting method based on convolutional neural network (CNN), self-attention encoder-decoder network (SAEDN) and residual-refinement (Res) is proposed. In this method, feature extraction module is composed of a two-dimensional convolutional neural network, which is used to mine the local correlation between data and obtain high-dimensional data features. The initial load fore-casting module consists of a self-attention encoder-decoder network and a feedforward neural network (FFN). The module utilizes self-attention mechanisms to encode high-dimensional features. This operation can obtain the global correlation between data. Therefore, the model is able to retain important information based on the coupling relationship between the data in data mixed with non-time series factors. Then, self-attention decoding is per-formed and the feedforward neural network is used to regression initial load. This paper introduces the residual mechanism to build the load optimization module. The module generates residual load values to optimize the initial load. The simulation results show that the proposed load forecasting method has advantages in terms of prediction accuracy and prediction stability.

* in Chinese language, Accepted by Electric Power Automation Equipment 
Viaarxiv icon

Alternative Pseudo-Labeling for Semi-Supervised Automatic Speech Recognition

Aug 12, 2023
Han Zhu, Dongji Gao, Gaofeng Cheng, Daniel Povey, Pengyuan Zhang, Yonghong Yan

Figure 1 for Alternative Pseudo-Labeling for Semi-Supervised Automatic Speech Recognition
Figure 2 for Alternative Pseudo-Labeling for Semi-Supervised Automatic Speech Recognition
Figure 3 for Alternative Pseudo-Labeling for Semi-Supervised Automatic Speech Recognition
Figure 4 for Alternative Pseudo-Labeling for Semi-Supervised Automatic Speech Recognition

When labeled data is insufficient, semi-supervised learning with the pseudo-labeling technique can significantly improve the performance of automatic speech recognition. However, pseudo-labels are often noisy, containing numerous incorrect tokens. Taking noisy labels as ground-truth in the loss function results in suboptimal performance. Previous works attempted to mitigate this issue by either filtering out the nosiest pseudo-labels or improving the overall quality of pseudo-labels. While these methods are effective to some extent, it is unrealistic to entirely eliminate incorrect tokens in pseudo-labels. In this work, we propose a novel framework named alternative pseudo-labeling to tackle the issue of noisy pseudo-labels from the perspective of the training objective. The framework comprises several components. Firstly, a generalized CTC loss function is introduced to handle noisy pseudo-labels by accepting alternative tokens in the positions of incorrect tokens. Applying this loss function in pseudo-labeling requires detecting incorrect tokens in the predicted pseudo-labels. In this work, we adopt a confidence-based error detection method that identifies the incorrect tokens by comparing their confidence scores with a given threshold, thus necessitating the confidence score to be discriminative. Hence, the second proposed technique is the contrastive CTC loss function that widens the confidence gap between the correctly and incorrectly predicted tokens, thereby improving the error detection ability. Additionally, obtaining satisfactory performance with confidence-based error detection typically requires extensive threshold tuning. Instead, we propose an automatic thresholding method that uses labeled data as a proxy for determining the threshold, thus saving the pain of manual tuning.

* Accepted by IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 2023 
Viaarxiv icon

Rec4Ad: A Free Lunch to Mitigate Sample Selection Bias for Ads CTR Prediction in Taobao

Jun 06, 2023
Jingyue Gao, Shuguang Han, Han Zhu, Siran Yang, Yuning Jiang, Jian Xu, Bo Zheng

Figure 1 for Rec4Ad: A Free Lunch to Mitigate Sample Selection Bias for Ads CTR Prediction in Taobao
Figure 2 for Rec4Ad: A Free Lunch to Mitigate Sample Selection Bias for Ads CTR Prediction in Taobao
Figure 3 for Rec4Ad: A Free Lunch to Mitigate Sample Selection Bias for Ads CTR Prediction in Taobao
Figure 4 for Rec4Ad: A Free Lunch to Mitigate Sample Selection Bias for Ads CTR Prediction in Taobao

Click-Through Rate (CTR) prediction serves as a fundamental component in online advertising. A common practice is to train a CTR model on advertisement (ad) impressions with user feedback. Since ad impressions are purposely selected by the model itself, their distribution differs from the inference distribution and thus exhibits sample selection bias (SSB) that affects model performance. Existing studies on SSB mainly employ sample re-weighting techniques which suffer from high variance and poor model calibration. Another line of work relies on costly uniform data that is inadequate to train industrial models. Thus mitigating SSB in industrial models with a uniform-data-free framework is worth exploring. Fortunately, many platforms display mixed results of organic items (i.e., recommendations) and sponsored items (i.e., ads) to users, where impressions of ads and recommendations are selected by different systems but share the same user decision rationales. Based on the above characteristics, we propose to leverage recommendations samples as a free lunch to mitigate SSB for ads CTR model (Rec4Ad). After elaborating data augmentation, Rec4Ad learns disentangled representations with alignment and decorrelation modules for enhancement. When deployed in Taobao display advertising system, Rec4Ad achieves substantial gains in key business metrics, with a lift of up to +6.6\% CTR and +2.9\% RPM.

Viaarxiv icon

COPR: Consistency-Oriented Pre-Ranking for Online Advertising

Jun 06, 2023
Zhishan Zhao, Jingyue Gao, Yu Zhang, Shuguang Han, Siyuan Lou, Xiang-Rong Sheng, Zhe Wang, Han Zhu, Yuning Jiang, Jian Xu, Bo Zheng

Figure 1 for COPR: Consistency-Oriented Pre-Ranking for Online Advertising
Figure 2 for COPR: Consistency-Oriented Pre-Ranking for Online Advertising
Figure 3 for COPR: Consistency-Oriented Pre-Ranking for Online Advertising
Figure 4 for COPR: Consistency-Oriented Pre-Ranking for Online Advertising

Cascading architecture has been widely adopted in large-scale advertising systems to balance efficiency and effectiveness. In this architecture, the pre-ranking model is expected to be a lightweight approximation of the ranking model, which handles more candidates with strict latency requirements. Due to the gap in model capacity, the pre-ranking and ranking models usually generate inconsistent ranked results, thus hurting the overall system effectiveness. The paradigm of score alignment is proposed to regularize their raw scores to be consistent. However, it suffers from inevitable alignment errors and error amplification by bids when applied in online advertising. To this end, we introduce a consistency-oriented pre-ranking framework for online advertising, which employs a chunk-based sampling module and a plug-and-play rank alignment module to explicitly optimize consistency of ECPM-ranked results. A $\Delta NDCG$-based weighting mechanism is adopted to better distinguish the importance of inter-chunk samples in optimization. Both online and offline experiments have validated the superiority of our framework. When deployed in Taobao display advertising system, it achieves an improvement of up to +12.3\% CTR and +5.6\% RPM.

Viaarxiv icon

Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report

Nov 07, 2022
Andrey Ignatov, Radu Timofte, Maurizio Denna, Abdel Younes, Ganzorig Gankhuyag, Jingang Huh, Myeong Kyun Kim, Kihwan Yoon, Hyeon-Cheol Moon, Seungho Lee, Yoonsik Choe, Jinwoo Jeong, Sungjei Kim, Maciej Smyl, Tomasz Latkowski, Pawel Kubik, Michal Sokolski, Yujie Ma, Jiahao Chao, Zhou Zhou, Hongfan Gao, Zhengfeng Yang, Zhenbing Zeng, Zhengyang Zhuge, Chenghua Li, Dan Zhu, Mengdi Sun, Ran Duan, Yan Gao, Lingshun Kong, Long Sun, Xiang Li, Xingdong Zhang, Jiawei Zhang, Yaqi Wu, Jinshan Pan, Gaocheng Yu, Jin Zhang, Feng Zhang, Zhe Ma, Hongbin Wang, Hojin Cho, Steve Kim, Huaen Li, Yanbo Ma, Ziwei Luo, Youwei Li, Lei Yu, Zhihong Wen, Qi Wu, Haoqiang Fan, Shuaicheng Liu, Lize Zhang, Zhikai Zong, Jeremy Kwon, Junxi Zhang, Mengyuan Li, Nianxiang Fu, Guanchen Ding, Han Zhu, Zhenzhong Chen, Gen Li, Yuanfan Zhang, Lei Sun, Dafeng Zhang, Neo Yang, Fitz Liu, Jerry Zhao, Mustafa Ayazoglu, Bahri Batuhan Bilecen, Shota Hirose, Kasidis Arunruangsirilert, Luo Ao, Ho Chun Leung, Andrew Wei, Jie Liu, Qiang Liu, Dahai Yu, Ao Li, Lei Luo, Ce Zhu, Seongmin Hong, Dongwon Park, Joonhee Lee, Byeong Hyun Lee, Seunggyu Lee, Se Young Chun, Ruiyuan He, Xuhao Jiang, Haihang Ruan, Xinjian Zhang, Jing Liu, Garas Gendy, Nabil Sabor, Jingchao Hou, Guanghui He

Figure 1 for Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report
Figure 2 for Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report
Figure 3 for Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report
Figure 4 for Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report

Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.

* arXiv admin note: text overlap with arXiv:2105.07825, arXiv:2105.08826, arXiv:2211.04470, arXiv:2211.03885, arXiv:2211.05256 
Viaarxiv icon

Learning Knowledge Representation with Meta Knowledge Distillation for Single Image Super-Resolution

Jul 18, 2022
Han Zhu, Zhenzhong Chen, Shan Liu

Figure 1 for Learning Knowledge Representation with Meta Knowledge Distillation for Single Image Super-Resolution
Figure 2 for Learning Knowledge Representation with Meta Knowledge Distillation for Single Image Super-Resolution
Figure 3 for Learning Knowledge Representation with Meta Knowledge Distillation for Single Image Super-Resolution
Figure 4 for Learning Knowledge Representation with Meta Knowledge Distillation for Single Image Super-Resolution

Knowledge distillation (KD), which can efficiently transfer knowledge from a cumbersome network (teacher) to a compact network (student), has demonstrated its advantages in some computer vision applications. The representation of knowledge is vital for knowledge transferring and student learning, which is generally defined in hand-crafted manners or uses the intermediate features directly. In this paper, we propose a model-agnostic meta knowledge distillation method under the teacher-student architecture for the single image super-resolution task. It provides a more flexible and accurate way to help the teachers transmit knowledge in accordance with the abilities of students via knowledge representation networks (KRNets) with learnable parameters. In order to improve the perception ability of knowledge representation to students' requirements, we propose to solve the transformation process from intermediate outputs to transferred knowledge by employing the student features and the correlation between teacher and student in the KRNets. Specifically, the texture-aware dynamic kernels are generated and then extract texture features to be improved and the corresponding teacher guidance so as to decompose the distillation problem into texture-wise supervision for further promoting the recovery quality of high-frequency details. In addition, the KRNets are optimized in a meta-learning manner to ensure the knowledge transferring and the student learning are beneficial to improving the reconstructed quality of the student. Experiments conducted on various single image super-resolution datasets demonstrate that our proposed method outperforms existing defined knowledge representation related distillation methods, and can help super-resolution algorithms achieve better reconstruction quality without introducing any inference complexity.

Viaarxiv icon

Boosting Cross-Domain Speech Recognition with Self-Supervision

Jun 20, 2022
Han Zhu, Gaofeng Cheng, Jindong Wang, Wenxin Hou, Pengyuan Zhang, Yonghong Yan

Figure 1 for Boosting Cross-Domain Speech Recognition with Self-Supervision
Figure 2 for Boosting Cross-Domain Speech Recognition with Self-Supervision
Figure 3 for Boosting Cross-Domain Speech Recognition with Self-Supervision
Figure 4 for Boosting Cross-Domain Speech Recognition with Self-Supervision

The cross-domain performance of automatic speech recognition (ASR) could be severely hampered due to the mismatch between training and testing distributions. Since the target domain usually lacks labeled data, and domain shifts exist at acoustic and linguistic levels, it is challenging to perform unsupervised domain adaptation (UDA) for ASR. Previous work has shown that self-supervised learning (SSL) or pseudo-labeling (PL) is effective in UDA by exploiting the self-supervisions of unlabeled data. However, these self-supervisions also face performance degradation in mismatched domain distributions, which previous work fails to address. This work presents a systematic UDA framework to fully utilize the unlabeled data with self-supervision in the pre-training and fine-tuning paradigm. On the one hand, we apply continued pre-training and data replay techniques to mitigate the domain mismatch of the SSL pre-trained model. On the other hand, we propose a domain-adaptive fine-tuning approach based on the PL technique with three unique modifications: Firstly, we design a dual-branch PL method to decrease the sensitivity to the erroneous pseudo-labels; Secondly, we devise an uncertainty-aware confidence filtering strategy to improve pseudo-label correctness; Thirdly, we introduce a two-step PL approach to incorporate target domain linguistic knowledge, thus generating more accurate target domain pseudo-labels. Experimental results on various cross-domain scenarios demonstrate that the proposed approach could effectively boost the cross-domain performance and significantly outperform previous approaches.

Viaarxiv icon

Adaptive Domain Interest Network for Multi-domain Recommendation

Jun 20, 2022
Yuchen Jiang, Qi Li, Han Zhu, Jinbei Yu, Jin Li, Ziru Xu, Huihui Dong, Bo Zheng

Figure 1 for Adaptive Domain Interest Network for Multi-domain Recommendation
Figure 2 for Adaptive Domain Interest Network for Multi-domain Recommendation
Figure 3 for Adaptive Domain Interest Network for Multi-domain Recommendation
Figure 4 for Adaptive Domain Interest Network for Multi-domain Recommendation

Industrial recommender systems usually hold data from multiple business scenarios and are expected to provide recommendation services for these scenarios simultaneously. In the retrieval step, the topK high-quality items selected from a large number of corpus usually need to be various for multiple scenarios. Take Alibaba display advertising system for example, not only because the behavior patterns of Taobao users are diverse, but also differentiated scenarios' bid prices assigned by advertisers vary significantly. Traditional methods either train models for each scenario separately, ignoring the cross-domain overlapping of user groups and items, or simply mix all samples and maintain a shared model which makes it difficult to capture significant diversities between scenarios. In this paper, we present Adaptive Domain Interest network that adaptively handles the commonalities and diversities across scenarios, making full use of multi-scenarios data during training. Then the proposed method is able to improve the performance of each business domain by giving various topK candidates for different scenarios during online inference. Specifically, our proposed ADI models the commonalities and diversities for different domains by shared networks and domain-specific networks, respectively. In addition, we apply the domain-specific batch normalization and design the domain interest adaptation layer for feature-level domain adaptation. A self training strategy is also incorporated to capture label-level connections across domains.ADI has been deployed in the display advertising system of Alibaba, and obtains 1.8% improvement on advertising revenue.

* 10 pages 
Viaarxiv icon

Decoupled Federated Learning for ASR with Non-IID Data

Jun 18, 2022
Han Zhu, Jindong Wang, Gaofeng Cheng, Pengyuan Zhang, Yonghong Yan

Figure 1 for Decoupled Federated Learning for ASR with Non-IID Data
Figure 2 for Decoupled Federated Learning for ASR with Non-IID Data
Figure 3 for Decoupled Federated Learning for ASR with Non-IID Data
Figure 4 for Decoupled Federated Learning for ASR with Non-IID Data

Automatic speech recognition (ASR) with federated learning (FL) makes it possible to leverage data from multiple clients without compromising privacy. The quality of FL-based ASR could be measured by recognition performance, communication and computation costs. When data among different clients are not independently and identically distributed (non-IID), the performance could degrade significantly. In this work, we tackle the non-IID issue in FL-based ASR with personalized FL, which learns personalized models for each client. Concretely, we propose two types of personalized FL approaches for ASR. Firstly, we adapt the personalization layer based FL for ASR, which keeps some layers locally to learn personalization models. Secondly, to reduce the communication and computation costs, we propose decoupled federated learning (DecoupleFL). On one hand, DecoupleFL moves the computation burden to the server, thus decreasing the computation on clients. On the other hand, DecoupleFL communicates secure high-level features instead of model parameters, thus reducing communication cost when models are large. Experiments demonstrate two proposed personalized FL-based ASR approaches could reduce WER by 2.3% - 3.4% compared with FedAvg. Among them, DecoupleFL has only 11.4% communication and 75% computation cost compared with FedAvg, which is also significantly less than the personalization layer based FL.

* Accepted by Interspeech 2022 
Viaarxiv icon