Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin, Zhaozhuo Xu, Chaoyang He

This paper explores existing works of multi-agent systems and identifies challenges that remain inadequately addressed. By leveraging the diverse capabilities and roles of individual agents within a multi-agent system, these systems can tackle complex tasks through collaboration. We discuss optimizing task allocation, fostering robust reasoning through iterative debates, managing complex and layered context information, and enhancing memory management to support the intricate interactions within multi-agent systems. We also explore the potential application of multi-agent systems in blockchain systems to shed light on their future development and application in real-world distributed systems.

Via

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, Xia Hu

Efficiently serving large language models (LLMs) requires batching many requests together to reduce the cost per request. Yet, the key-value (KV) cache, which stores attention keys and values to avoid re-computations, significantly increases memory demands and becomes the new bottleneck in speed and memory usage. This memory demand increases with larger batch sizes and longer context lengths. Additionally, the inference speed is limited by the size of KV cache, as the GPU's SRAM must load the entire KV cache from the main GPU memory for each token generated, causing the computational core to be idle during this process. A straightforward and effective solution to reduce KV cache size is quantization, which decreases the total bytes taken by KV cache. However, there is a lack of in-depth studies that explore the element distribution of KV cache to understand the hardness and limitation of KV cache quantization. To fill the gap, we conducted a comprehensive study on the element distribution in KV cache of popular LLMs. Our findings indicate that the key cache should be quantized per-channel, i.e., group elements along the channel dimension and quantize them together. In contrast, the value cache should be quantized per-token. From this analysis, we developed a tuning-free 2bit KV cache quantization algorithm, named KIVI. With the hardware-friendly implementation, KIVI can enable Llama (Llama-2), Falcon, and Mistral models to maintain almost the same quality while using $\mathbf{2.6\times}$ less peak memory usage (including the model weight). This reduction in memory usage enables up to $\mathbf{4\times}$ larger batch size, bringing $\mathbf{2.35\times \sim 3.47\times}$ throughput on real LLM inference workload. The source code is available at https://github.com/jy-yuan/KIVI.

Via

Guanchu Wang, Yu-Neng Chuang, Fan Yang, Mengnan Du, Chia-Yuan Chang, Shaochen Zhong, Zirui Liu, Zhaozhuo Xu, Kaixiong Zhou, Xuanting Cai, Xia Hu

Explainable machine learning significantly improves the transparency of deep neural networks~(DNN). However, existing work is constrained to explaining the behavior of individual model predictions, and lacks the ability to transfer the explanation across various models and tasks. This limitation results in explaining various tasks being time- and resource-consuming. To address this problem, we develop a pre-trained, DNN-based, generic explainer on large-scale image datasets, and leverage its transferability to explain various vision models for downstream tasks. In particular, the pre-training of generic explainer focuses on LEarning Transferable Attribution (LETA). The transferable attribution takes advantage of the versatile output of the target backbone encoders to comprehensively encode the essential attribution for explaining various downstream tasks. LETA guides the pre-training of the generic explainer towards the transferable attribution, and introduces a rule-based adaptation of the transferable attribution for explaining downstream tasks, without the need for additional training on downstream data. Theoretical analysis demonstrates that the pre-training of LETA enables minimizing the explanation error bound aligned with the conditional $\mathcal{V}$-information on downstream tasks. Empirical studies involve explaining three different architectures of vision models across three diverse downstream datasets. The experiment results indicate LETA is effective in explaining these tasks without the need for additional training on the data of downstream tasks.

Via

Zhuang Wang, Zhaozhuo Xu, Anshumali Shrivastava, T. S. Eugene Ng

Distributed training is the de facto standard to scale up the training of Deep Neural Networks (DNNs) with multiple GPUs. The performance bottleneck of distributed training lies in communications for gradient synchronization. Recently, practitioners have observed sparsity in gradient tensors, suggesting the potential to reduce the traffic volume in communication and improve end-to-end training efficiency. Yet, the optimal communication scheme to fully leverage sparsity is still missing. This paper aims to address this gap. We first analyze the characteristics of sparse tensors in popular DNN models to understand the fundamentals of sparsity. We then systematically explore the design space of communication schemes for sparse tensors and find the optimal one. % We then find the optimal scheme based on the characteristics by systematically exploring the design space. We also develop a gradient synchronization system called Zen that approximately realizes it for sparse tensors. We demonstrate that Zen can achieve up to 5.09x speedup in communication time and up to 2.48x speedup in training throughput compared to the state-of-the-art methods.

Via

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis, Anshumali Shrivastava

Large language models(LLMs) have sparked a new wave of exciting AI applications. Hosting these models at scale requires significant memory resources. One crucial memory bottleneck for the deployment stems from the context window. It is commonly recognized that model weights are memory hungry; however, the size of key-value embedding stored during the generation process (KV cache) can easily surpass the model size. The enormous size of the KV cache puts constraints on the inference batch size, which is crucial for high throughput inference workload. Inspired by an interesting observation of the attention scores, we hypothesize the persistence of importance: only pivotal tokens, which had a substantial influence at one step, will significantly influence future generations. Based on our empirical verification and theoretical analysis around this hypothesis, we propose Scissorhands, a system that maintains the memory usage of the KV cache at a fixed budget without finetuning the model. In essence, Scissorhands manages the KV cache by storing the pivotal tokens with a higher probability. We validate that Scissorhands reduces the inference memory usage of the KV cache by up to 5X without compromising model quality. We further demonstrate that Scissorhands can be combined with 4-bit quantization, traditionally used to compress model weights, to achieve up to 20X compression.

Via

Zirui Liu, Guanchu Wang, Shaochen Zhong, Zhaozhuo Xu, Daochen Zha, Ruixiang Tang, Zhimeng Jiang, Kaixiong Zhou, Vipin Chaudhary, Shuai Xu, Xia Hu

With the rapid growth in model size, fine-tuning the large pre-trained language model has become increasingly difficult due to its extensive memory usage. Previous works usually focus on reducing the number of trainable parameters in the network. While the model parameters do contribute to memory usage, the primary memory bottleneck during training arises from storing feature maps, also known as activations, as they are crucial for gradient calculation. Notably, neural networks are usually trained using stochastic gradient descent. We argue that in stochastic optimization, models can handle noisy gradients as long as the gradient estimator is unbiased with reasonable variance. Following this motivation, we propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance, which only requires storing the sub-sampled activations for calculating the gradient. Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones. By replacing the linear operation with our approximated one in transformers, we can achieve up to 2.7$\times$ peak memory reduction with almost no accuracy drop and enables up to $6.4\times$ larger batch size. Under the same hardware, WTA-CRS enables better down-streaming task performance by applying larger models and/or faster training speed with larger batch sizes.

Via

Zhaozhuo Xu, Zirui Liu, Beidi Chen, Yuxin Tang, Jue Wang, Kaixiong Zhou, Xia Hu, Anshumali Shrivastava

Large Language Models (LLMs), armed with billions of parameters, exhibit exceptional performance across a wide range of Natural Language Processing (NLP) tasks. However, they present a significant computational challenge during inference, especially when deploying on common hardware such as single GPUs. As such, minimizing the latency of LLM inference by curtailing computational and memory requirements, though achieved through compression, becomes critically important. However, this process inevitably instigates a trade-off between efficiency and accuracy, as compressed LLMs typically experience a reduction in predictive precision. In this research, we introduce an innovative perspective: to optimize this trade-off, compressed LLMs require a unique input format that varies from that of the original models. Our findings indicate that the generation quality in a compressed LLM can be markedly improved for specific queries by selecting prompts with precision. Capitalizing on this insight, we introduce a prompt learning paradigm that cultivates an additive prompt over a compressed LLM to bolster their accuracy. Our empirical results imply that through our strategic prompt utilization, compressed LLMs can match, and occasionally even exceed, the accuracy of the original models. Moreover, we demonstrated that these learned prompts have a certain degree of transferability across various datasets, tasks, and compression levels. These insights shine a light on new possibilities for enhancing the balance between accuracy and efficiency in LLM inference. Specifically, they underscore the importance of judicious input editing to a compressed large model, hinting at potential advancements in scaling LLMs on common hardware.

Via

Anshumali Shrivastava, Zhao Song, Zhaozhuo Xu

Graph-based algorithms have demonstrated state-of-the-art performance in the nearest neighbor search (NN-Search) problem. These empirical successes urge the need for theoretical results that guarantee the search quality and efficiency of these algorithms. However, there exists a practice-to-theory gap in the graph-based NN-Search algorithms. Current theoretical literature focuses on greedy search on exact near neighbor graph while practitioners use approximate near neighbor graph (ANN-Graph) to reduce the preprocessing time. This work bridges this gap by presenting the theoretical guarantees of solving NN-Search via greedy search on ANN-Graph for low dimensional and dense vectors. To build this bridge, we leverage several novel tools from computational geometry. Our results provide quantification of the trade-offs associated with the approximation while building a near neighbor graph. We hope our results will open the door for more provable efficient graph-based NN-Search algorithms.

Via

Lianke Qin, Aravind Reddy, Zhao Song, Zhaozhuo Xu, Danyang Zhuo

In this paper, we propose Adam-Hash: an adaptive and dynamic multi-resolution hashing data-structure for fast pairwise summation estimation. Given a data-set $X \subset \mathbb{R}^d$, a binary function $f:\mathbb{R}^d\times \mathbb{R}^d\to \mathbb{R}$, and a point $y \in \mathbb{R}^d$, the Pairwise Summation Estimate $\mathrm{PSE}_X(y) := \frac{1}{|X|} \sum_{x \in X} f(x,y)$. For any given data-set $X$, we need to design a data-structure such that given any query point $y \in \mathbb{R}^d$, the data-structure approximately estimates $\mathrm{PSE}_X(y)$ in time that is sub-linear in $|X|$. Prior works on this problem have focused exclusively on the case where the data-set is static, and the queries are independent. In this paper, we design a hashing-based PSE data-structure which works for the more practical \textit{dynamic} setting in which insertions, deletions, and replacements of points are allowed. Moreover, our proposed Adam-Hash is also robust to adaptive PSE queries, where an adversary can choose query $q_j \in \mathbb{R}^d$ depending on the output from previous queries $q_1, q_2, \dots, q_{j-1}$.

Via

Jiehao Liang, Zhao Song, Zhaozhuo Xu, Danyang Zhuo

Kernel density estimation (KDE) stands out as a challenging task in machine learning. The problem is defined in the following way: given a kernel function $f(x,y)$ and a set of points $\{x_1, x_2, \cdots, x_n \} \subset \mathbb{R}^d$, we would like to compute $\frac{1}{n}\sum_{i=1}^{n} f(x_i,y)$ for any query point $y \in \mathbb{R}^d$. Recently, there has been a growing trend of using data structures for efficient KDE. However, the proposed KDE data structures focus on static settings. The robustness of KDE data structures over dynamic changing data distributions is not addressed. In this work, we focus on the dynamic maintenance of KDE data structures with robustness to adversarial queries. Especially, we provide a theoretical framework of KDE data structures. In our framework, the KDE data structures only require subquadratic spaces. Moreover, our data structure supports the dynamic update of the dataset in sublinear time. Furthermore, we can perform adaptive queries with the potential adversary in sublinear time.

Via