Abstract:With the widespread use of large language models (LLMs), understanding their potential failure modes during user interactions is essential. In practice, users often pose multiple questions in a single conversation with LLMs. Therefore, in this study, we propose Group Query Attack, a technique that simulates this scenario by presenting groups of queries to LLMs simultaneously. We investigate how the accumulated context from consecutive prompts influences the outputs of LLMs. Specifically, we observe that Group Query Attack significantly degrades the performance of models fine-tuned on specific tasks. Moreover, we demonstrate that Group Query Attack induces a risk of triggering potential backdoors of LLMs. Besides, Group Query Attack is also effective in tasks involving reasoning, such as mathematical reasoning and code generation for pre-trained and aligned models.
Abstract:Recent text-to-SQL models have achieved strong performance, but their effectiveness remains largely confined to SQLite due to dataset limitations. However, real-world applications require SQL generation across multiple dialects with varying syntax and specialized features, which remains a challenge for current models. The main obstacle in building a dialect-aware model lies in acquiring high-quality dialect-specific data. Data generated purely through static prompting - without validating SQLs via execution - tends to be noisy and unreliable. Moreover, the lack of real execution environments in the training loop prevents models from grounding their predictions in executable semantics, limiting generalization despite surface-level improvements from data filtering. This work introduces ExeSQL, a text-to-SQL framework with execution-driven, agentic bootstrapping. The method consists of iterative query generation, execution-based filtering (e.g., rejection sampling), and preference-based training, enabling the model to adapt to new SQL dialects through verifiable, feedback-guided learning. Experiments show that ExeSQL bridges the dialect gap in text-to-SQL, achieving average improvements of 15.2%, 10.38%, and 4.49% over GPT-4o on PostgreSQL, MySQL, and Oracle, respectively, across multiple datasets of varying difficulty.