Abstract:Time series forecasting has traditionally been formulated as a model-centric, static, and single-pass prediction problem that maps historical observations to future values. While this paradigm has driven substantial progress, it proves insufficient in adaptive and multi-turn settings where forecasting requires informative feature extraction, reasoning-driven inference, iterative refinement, and continual adaptation over time. In this paper, we argue for agentic time series forecasting (ATSF), which reframes forecasting as an agentic process composed of perception, planning, action, reflection, and memory. Rather than focusing solely on predictive models, ATSF emphasizes organizing forecasting as an agentic workflow that can interact with tools, incorporate feedback from outcomes, and evolve through experience accumulation. We outline three representative implementation paradigms -- workflow-based design, agentic reinforcement learning, and a hybrid agentic workflow paradigm -- and discuss the opportunities and challenges that arise when shifting from model-centric prediction to agentic forecasting. Together, this position aims to establish agentic forecasting as a foundation for future research at the intersection of time series forecasting.
Abstract:While open sourced Vision-Language Models (VLMs) have proliferated, selecting the optimal pretrained model for a specific downstream task remains challenging. Exhaustive evaluation is often infeasible due to computational constraints and data limitations in few shot scenarios. Existing selection methods fail to fully address this: they either rely on data-intensive proxies or use symmetric textual descriptors that neglect the inherently directional and model-specific nature of transferability. To address this problem, we propose a framework that grounds model selection in the internal functional dynamics of the visual encoder. Our approach represents each task via layer wise conductance and derives a target-conditioned block importance distribution through entropy regularized alignment. Building on this, we introduce Directional Conductance Divergence (DCD), an asymmetric metric that quantifies how effectively a source task covers the target's salient functional blocks. This allows for predicting target model rankings by aggregating source task ranks without direct inference. Experimental results on 48 VLMs across 21 datasets demonstrate that our method outperforms state-of-the-art baselines, achieving a 14.7% improvement in NDCG@5 over SWAB.
Abstract:The Softmax loss is one of the most widely employed surrogate objectives for classification and ranking tasks. To elucidate its theoretical properties, the Fenchel-Young framework situates it as a canonical instance within a broad family of surrogates. Concurrently, another line of research has addressed scalability when the number of classes is exceedingly large, in which numerous approximations have been proposed to retain the benefits of the exact objective while improving efficiency. Building on these two perspectives, we present a principled investigation of the Softmax-family losses. We examine whether different surrogates achieve consistency with classification and ranking metrics, and analyze their gradient dynamics to reveal distinct convergence behaviors. We also introduce a systematic bias-variance decomposition for approximate methods that provides convergence guarantees, and further derive a per-epoch complexity analysis, showing explicit trade-offs between effectiveness and efficiency. Extensive experiments on a representative task demonstrate a strong alignment between consistency, convergence, and empirical performance. Together, these results establish a principled foundation and offer practical guidance for loss selections in large-class machine learning applications.
Abstract:The reinforcement fine-tuning area is undergoing an explosion papers largely on optimizing design choices. Though performance gains are often claimed, inconsistent conclusions also arise from time to time, making the progress illusive. Reflecting on this illusion, we still lack principled answers to two fundamental questions: 1) what is the role of each design choice? 2) which ones are critical? This paper aims to shed light on them. The underlying challenge is that design choices are entangled together, making their contribution to learning and generalization difficult to attribute. To address this challenge, we first construct a minimalist baseline for disentangling factors: one rollout per query in each round, the outcome reward serving as the training signal without any advantage trick, and a batch size of thirty-two. This baseline connects to batched contextual bandit learning, which facilitates experimental analysis. Centering around this baseline, we design an experiment pipeline, examining the marginal gains of factors like advantage, number of rollouts, etc. Experiments on three base models and two datasets, not only reveal new understanding on the role of various design choices on learning and generalization dynamics, but also identify critical ones that deserve more effort.
Abstract:A growing body of research suggests that the cognitive processes of large language models (LLMs) differ fundamentally from those of humans. However, existing interpretability methods remain limited in explaining how cognitive abilities are engaged during LLM reasoning. In this paper, we propose UniCog, a unified framework that analyzes LLM cognition via a latent mind space. Formulated as a latent variable model, UniCog encodes diverse abilities from dense model activations into sparse, disentangled latent dimensions. Through extensive analysis on six advanced LLMs, including DeepSeek-V3.2 and GPT-4o, we reveal a Pareto principle of LLM cognition, where a shared reasoning core is complemented by ability-specific signatures. Furthermore, we discover that reasoning failures often manifest as anomalous intensity in latent activations. These findings opens a new paradigm in LLM analysis, providing a cognition grounded view of reasoning dynamics. Finally, leveraging these insights, we introduce a latent-informed candidate prioritization strategy, which improves reasoning performance by up to 7.5% across challenging benchmarks. Our code is available at https://github.com/milksalute/unicog.
Abstract:Most existing time series classification methods adopt a discriminative paradigm that maps input sequences directly to one-hot encoded class labels. While effective, this paradigm struggles to incorporate contextual features and fails to capture semantic relationships among classes. To address these limitations, we propose InstructTime, a novel framework that reformulates time series classification as a multimodal generative task. Specifically, continuous numerical sequences, contextual textual features, and task instructions are treated as multimodal inputs, while class labels are generated as textual outputs by tuned language models. To bridge the modality gap, InstructTime introduces a time series discretization module that converts continuous sequences into discrete temporal tokens, together with an alignment projection layer and a generative self-supervised pre-training strategy to enhance cross-modal representation alignment. Building upon this framework, we further propose InstructTime++, which extends InstructTime by incorporating implicit feature modeling to compensate for the limited inductive bias of language models. InstructTime++ leverages specialized toolkits to mine informative implicit patterns from raw time series and contextual inputs, including statistical feature extraction and vision-language-based image captioning, and translates them into textual descriptions for seamless integration. Extensive experiments on multiple benchmark datasets demonstrate the superior performance of InstructTime++.
Abstract:Zero-shot composed image retrieval (ZS-CIR) is a rapidly growing area with significant practical applications, allowing users to retrieve a target image by providing a reference image and a relative caption describing the desired modifications. Existing ZS-CIR methods often struggle to capture fine-grained changes and integrate visual and semantic information effectively. They primarily rely on either transforming the multimodal query into a single text using image-to-text models or employing large language models for target image description generation, approaches that often fail to capture complementary visual information and complete semantic context. To address these limitations, we propose a novel Fine-Grained Zero-Shot Composed Image Retrieval method with Complementary Visual-Semantic Integration (CVSI). Specifically, CVSI leverages three key components: (1) Visual Information Extraction, which not only extracts global image features but also uses a pre-trained mapping network to convert the image into a pseudo token, combining it with the modification text and the objects most likely to be added. (2) Semantic Information Extraction, which involves using a pre-trained captioning model to generate multiple captions for the reference image, followed by leveraging an LLM to generate the modified captions and the objects most likely to be added. (3) Complementary Information Retrieval, which integrates information extracted from both the query and database images to retrieve the target image, enabling the system to efficiently handle retrieval queries in a variety of situations. Extensive experiments on three public datasets (e.g., CIRR, CIRCO, and FashionIQ) demonstrate that CVSI significantly outperforms existing state-of-the-art methods. Our code is available at https://github.com/yyc6631/CVSI.
Abstract:Recent years have witnessed the rapid development of Large Language Model-based Multi-Agent Systems (MAS), which excel at collaborative decision-making and complex problem-solving. Recently, researchers have further investigated Multi-Agent Debate (MAD) frameworks, which enhance the reasoning and collaboration capabilities of MAS through information exchange and debate among multiple agents. However, existing approaches often rely on unguided initialization, causing agents to adopt identical reasoning paths that lead to the same errors. As a result, effective debate among agents is hindered, and the final outcome frequently degenerates into simple majority voting. To solve the above problem, in this paper, we introduce Dynamic Multi-Agent Debate (DynaDebate), which enhances the effectiveness of multi-agent debate through three key mechanisms: (1) Dynamic Path Generation and Allocation, which employs a dedicated Path Generation Agent to generate diverse and logical solution paths with adaptive redundancy; (2) Process-Centric Debate, which shifts the focus from surface-level outcome voting to rigorous step-by-step logic critique to ensure process correctness; (3) A Trigger-Based Verification Agent, which is activated upon disagreement and uses external tools to objectively resolve deadlocks. Extensive experiments demonstrate that DynaDebate achieves superior performance across various benchmarks, surpassing existing state-of-the-art MAD methods.
Abstract:LLM agents operating in open environments face escalating risks from indirect prompt injection, particularly within the tool stream where manipulated metadata and runtime feedback hijack execution flow. Existing defenses encounter a critical dilemma as advanced models prioritize injected rules due to strict alignment while static protection mechanisms sever the feedback loop required for adaptive reasoning. To reconcile this conflict, we propose \textbf{VIGIL}, a framework that shifts the paradigm from restrictive isolation to a verify-before-commit protocol. By facilitating speculative hypothesis generation and enforcing safety through intent-grounded verification, \textbf{VIGIL} preserves reasoning flexibility while ensuring robust control. We further introduce \textbf{SIREN}, a benchmark comprising 959 tool stream injection cases designed to simulate pervasive threats characterized by dynamic dependencies. Extensive experiments demonstrate that \textbf{VIGIL} outperforms state-of-the-art dynamic defenses by reducing the attack success rate by over 22\% while more than doubling the utility under attack compared to static baselines, thereby achieving an optimal balance between security and utility. Code is available at https://anonymous.4open.science/r/VIGIL-378B/.
Abstract:Time series are highly valuable and rarely shareable across nodes, making federated learning a promising paradigm to leverage distributed temporal data. However, different sampling standards lead to diverse time granularities and variable sets across nodes, hindering classical federated learning. We propose PiXTime, a novel time series forecasting model designed for federated learning that enables effective prediction across nodes with multi-granularity and heterogeneous variable sets. PiXTime employs a personalized Patch Embedding to map node-specific granularity time series into token sequences of a unified dimension for processing by a subsequent shared model, and uses a global VE Table to align variable category semantics across nodes, thereby enhancing cross-node transferability. With a transformer-based shared model, PiXTime captures representations of auxiliary series with arbitrary numbers of variables and uses cross-attention to enhance the prediction of the target series. Experiments show PiXTime achieves state-of-the-art performance in federated settings and demonstrates superior performance on eight widely used real-world traditional benchmarks.