Xidian University, China
Abstract:"Fedspeak", the stylized and often nuanced language used by the U.S. Federal Reserve, encodes implicit policy signals and strategic stances. The Federal Open Market Committee strategically employs Fedspeak as a communication tool to shape market expectations and influence both domestic and global economic conditions. As such, automatically parsing and interpreting Fedspeak presents a high-impact challenge, with significant implications for financial forecasting, algorithmic trading, and data-driven policy analysis. In this paper, we propose an LLM-based, uncertainty-aware framework for deciphering Fedspeak and classifying its underlying monetary policy stance. Technically, to enrich the semantic and contextual representation of Fedspeak texts, we incorporate domain-specific reasoning grounded in the monetary policy transmission mechanism. We further introduce a dynamic uncertainty decoding module to assess the confidence of model predictions, thereby enhancing both classification accuracy and model reliability. Experimental results demonstrate that our framework achieves state-of-the-art performance on the policy stance analysis task. Moreover, statistical analysis reveals a significant positive correlation between perceptual uncertainty and model error rates, validating the effectiveness of perceptual uncertainty as a diagnostic signal.
Abstract:While 3D Gaussian Splatting (3DGS) excels in static scene modeling, its extension to dynamic scenes introduces significant challenges. Existing dynamic 3DGS methods suffer from either over-smoothing due to low-rank decomposition or feature collision from high-dimensional grid sampling. This is because of the inherent spectral conflicts between preserving motion details and maintaining deformation consistency at different frequency. To address these challenges, we propose a novel dynamic 3DGS framework with hybrid explicit-implicit functions. Our approach contains three key innovations: a spectral-aware Laplacian encoding architecture which merges Hash encoding and Laplacian-based module for flexible frequency motion control, an enhanced Gaussian dynamics attribute that compensates for photometric distortions caused by geometric deformation, and an adaptive Gaussian split strategy guided by KDTree-based primitive control to efficiently query and optimize dynamic areas. Through extensive experiments, our method demonstrates state-of-the-art performance in reconstructing complex dynamic scenes, achieving better reconstruction fidelity.
Abstract:Recent advances in 3D Gaussian Splatting (3DGS) have demonstrated remarkable capabilities in real-time and photorealistic novel view synthesis. However, traditional 3DGS representations often struggle with large-scale scene management and efficient storage, particularly when dealing with complex environments or limited computational resources. To address these limitations, we introduce a novel perceive-sample-compress framework for 3D Gaussian Splatting. Specifically, we propose a scene perception compensation algorithm that intelligently refines Gaussian parameters at each level. This algorithm intelligently prioritizes visual importance for higher fidelity rendering in critical areas, while optimizing resource usage and improving overall visible quality. Furthermore, we propose a pyramid sampling representation to manage Gaussian primitives across hierarchical levels. Finally, to facilitate efficient storage of proposed hierarchical pyramid representations, we develop a Generalized Gaussian Mixed model compression algorithm to achieve significant compression ratios without sacrificing visual fidelity. The extensive experiments demonstrate that our method significantly improves memory efficiency and high visual quality while maintaining real-time rendering speed.
Abstract:Large Language Models (LLMs) demonstrate strong capabilities in broad knowledge representation, yet they are inherently deficient in pixel-level perceptual understanding. Although the Segment Anything Model (SAM) represents a significant advancement in visual-prompt-driven image segmentation, it exhibits notable limitations in multi-mask prediction and category-specific segmentation tasks, and it cannot integrate all segmentation tasks within a unified model architecture. To address these limitations, we present X-SAM, a streamlined Multimodal Large Language Model (MLLM) framework that extends the segmentation paradigm from \textit{segment anything} to \textit{any segmentation}. Specifically, we introduce a novel unified framework that enables more advanced pixel-level perceptual comprehension for MLLMs. Furthermore, we propose a new segmentation task, termed Visual GrounDed (VGD) segmentation, which segments all instance objects with interactive visual prompts and empowers MLLMs with visual grounded, pixel-wise interpretative capabilities. To enable effective training on diverse data sources, we present a unified training strategy that supports co-training across multiple datasets. Experimental results demonstrate that X-SAM achieves state-of-the-art performance on a wide range of image segmentation benchmarks, highlighting its efficiency for multimodal, pixel-level visual understanding. Code is available at https://github.com/wanghao9610/X-SAM.
Abstract:Incrementally recovering real-sized 3D geometry from a pose-free RGB stream is a challenging task in 3D reconstruction, requiring minimal assumptions on input data. Existing methods can be broadly categorized into end-to-end and visual SLAM-based approaches, both of which either struggle with long sequences or depend on slow test-time optimization and depth sensors. To address this, we first integrate a depth estimator into an RGB-D SLAM system, but this approach is hindered by inaccurate geometric details in predicted depth. Through further investigation, we find that 3D Gaussian mapping can effectively solve this problem. Building on this, we propose an online 3D reconstruction method using 3D Gaussian-based SLAM, combined with a feed-forward recurrent prediction module to directly infer camera pose from optical flow. This approach replaces slow test-time optimization with fast network inference, significantly improving tracking speed. Additionally, we introduce a local graph rendering technique to enhance robustness in feed-forward pose prediction. Experimental results on the Replica and TUM-RGBD datasets, along with a real-world deployment demonstration, show that our method achieves performance on par with the state-of-the-art SplaTAM, while reducing tracking time by more than 90\%.
Abstract:3D point cloud segmentation aims to assign semantic labels to individual points in a scene for fine-grained spatial understanding. Existing methods typically adopt data augmentation to alleviate the burden of large-scale annotation. However, most augmentation strategies only focus on local transformations or semantic recomposition, lacking the consideration of global structural dependencies within scenes. To address this limitation, we propose a graph-guided data augmentation framework with dual-level constraints for realistic 3D scene synthesis. Our method learns object relationship statistics from real-world data to construct guiding graphs for scene generation. Local-level constraints enforce geometric plausibility and semantic consistency between objects, while global-level constraints maintain the topological structure of the scene by aligning the generated layout with the guiding graph. Extensive experiments on indoor and outdoor datasets demonstrate that our framework generates diverse and high-quality augmented scenes, leading to consistent improvements in point cloud segmentation performance across various models.
Abstract:Advances in Generative AI have made video-level deepfake detection increasingly challenging, exposing the limitations of current detection techniques. In this paper, we present HOLA, our solution to the Video-Level Deepfake Detection track of 2025 1M-Deepfakes Detection Challenge. Inspired by the success of large-scale pre-training in the general domain, we first scale audio-visual self-supervised pre-training in the multimodal video-level deepfake detection, which leverages our self-built dataset of 1.81M samples, thereby leading to a unified two-stage framework. To be specific, HOLA features an iterative-aware cross-modal learning module for selective audio-visual interactions, hierarchical contextual modeling with gated aggregations under the local-global perspective, and a pyramid-like refiner for scale-aware cross-grained semantic enhancements. Moreover, we propose the pseudo supervised singal injection strategy to further boost model performance. Extensive experiments across expert models and MLLMs impressivly demonstrate the effectiveness of our proposed HOLA. We also conduct a series of ablation studies to explore the crucial design factors of our introduced components. Remarkably, our HOLA ranks 1st, outperforming the second by 0.0476 AUC on the TestA set.
Abstract:Multi-step agentic retrieval systems based on large language models (LLMs) have demonstrated remarkable performance in complex information search tasks. However, these systems still face significant challenges in practical applications, particularly in generating factually inconsistent intermediate queries and inefficient search trajectories, which can lead to reasoning deviations or redundant computations. To address these issues, we propose DynaSearcher, an innovative search agent enhanced by dynamic knowledge graphs and multi-reward reinforcement learning (RL). Specifically, our system leverages knowledge graphs as external structured knowledge to guide the search process by explicitly modeling entity relationships, thereby ensuring factual consistency in intermediate queries and mitigating biases from irrelevant information. Furthermore, we employ a multi-reward RL framework for fine-grained control over training objectives such as retrieval accuracy, efficiency, and response quality. This framework promotes the generation of high-quality intermediate queries and comprehensive final answers, while discouraging unnecessary exploration and minimizing information omissions or redundancy. Experimental results demonstrate that our approach achieves state-of-the-art answer accuracy on six multi-hop question answering datasets, matching frontier LLMs while using only small-scale models and limited computational resources. Furthermore, our approach demonstrates strong generalization and robustness across diverse retrieval environments and larger-scale models, highlighting its broad applicability.
Abstract:Spatial audio is an integral part of immersive entertainment, such as VR/AR, and has seen increasing popularity in cinema and music as well. The most common format of spatial audio is described as first-order Ambisonics (FOA). We seek to extend recent advancements in FOA generative AI models to enable the generation of 3D scenes with dynamic sound sources. Our proposed end-to-end model, SonicMotion, comes in two variations which vary in their user input and level of precision in sound source localization. In addition to our model, we also present a new dataset of simulated spatial audio-caption pairs. Evaluation of our models demonstrate that they are capable of matching the semantic alignment and audio quality of state of the art models while capturing the desired spatial attributes.
Abstract:Large Language Models (LLMs) have demonstrated impressive reasoning capabilities, especially when guided by explicit chain-of-thought (CoT) reasoning that verbalizes intermediate steps. While CoT improves both interpretability and accuracy, its dependence on natural language reasoning limits the model's expressive bandwidth. Latent reasoning tackles this bottleneck by performing multi-step inference entirely in the model's continuous hidden state, eliminating token-level supervision. To advance latent reasoning research, this survey provides a comprehensive overview of the emerging field of latent reasoning. We begin by examining the foundational role of neural network layers as the computational substrate for reasoning, highlighting how hierarchical representations support complex transformations. Next, we explore diverse latent reasoning methodologies, including activation-based recurrence, hidden state propagation, and fine-tuning strategies that compress or internalize explicit reasoning traces. Finally, we discuss advanced paradigms such as infinite-depth latent reasoning via masked diffusion models, which enable globally consistent and reversible reasoning processes. By unifying these perspectives, we aim to clarify the conceptual landscape of latent reasoning and chart future directions for research at the frontier of LLM cognition. An associated GitHub repository collecting the latest papers and repos is available at: https://github.com/multimodal-art-projection/LatentCoT-Horizon/.