In the real world, image degradations caused by rain often exhibit a combination of rain streaks and raindrops, thereby increasing the challenges of recovering the underlying clean image. Note that the rain streaks and raindrops have diverse shapes, sizes, and locations in the captured image, and thus modeling the correlation relationship between irregular degradations caused by rain artifacts is a necessary prerequisite for image deraining. This paper aims to present an efficient and flexible mechanism to learn and model degradation relationships in a global view, thereby achieving a unified removal of intricate rain scenes. To do so, we propose a Sparse Sampling Transformer based on Uncertainty-Driven Ranking, dubbed UDR-S2Former. Compared to previous methods, our UDR-S2Former has three merits. First, it can adaptively sample relevant image degradation information to model underlying degradation relationships. Second, explicit application of the uncertainty-driven ranking strategy can facilitate the network to attend to degradation features and understand the reconstruction process. Finally, experimental results show that our UDR-S2Former clearly outperforms state-of-the-art methods for all benchmarks.
Whole slide image (WSI) classification is an essential task in computational pathology. Despite the recent advances in multiple instance learning (MIL) for WSI classification, accurate classification of WSIs remains challenging due to the extreme imbalance between the positive and negative instances in bags, and the complicated pre-processing to fuse multi-scale information of WSI. To this end, we propose a novel multi-scale prototypical Transformer (MSPT) for WSI classification, which includes a prototypical Transformer (PT) module and a multi-scale feature fusion module (MFFM). The PT is developed to reduce redundant instances in bags by integrating prototypical learning into the Transformer architecture. It substitutes all instances with cluster prototypes, which are then re-calibrated through the self-attention mechanism of the Trans-former. Thereafter, an MFFM is proposed to fuse the clustered prototypes of different scales, which employs MLP-Mixer to enhance the information communication between prototypes. The experimental results on two public WSI datasets demonstrate that the proposed MSPT outperforms all the compared algorithms, suggesting its potential applications.
Recently, deep learning methods have been widely used for tumor segmentation of multimodal medical images with promising results. However, most existing methods are limited by insufficient representational ability, specific modality number and high computational complexity. In this paper, we propose a hybrid densely connected network for tumor segmentation, named H-DenseFormer, which combines the representational power of the Convolutional Neural Network (CNN) and the Transformer structures. Specifically, H-DenseFormer integrates a Transformer-based Multi-path Parallel Embedding (MPE) module that can take an arbitrary number of modalities as input to extract the fusion features from different modalities. Then, the multimodal fusion features are delivered to different levels of the encoder to enhance multimodal learning representation. Besides, we design a lightweight Densely Connected Transformer (DCT) block to replace the standard Transformer block, thus significantly reducing computational complexity. We conduct extensive experiments on two public multimodal datasets, HECKTOR21 and PI-CAI22. The experimental results show that our proposed method outperforms the existing state-of-the-art methods while having lower computational complexity. The source code is available at https://github.com/shijun18/H-DenseFormer.
Real-time object detection plays a vital role in various computer vision applications. However, deploying real-time object detectors on resource-constrained platforms poses challenges due to high computational and memory requirements. This paper describes a low-bit quantization method to build a highly efficient one-stage detector, dubbed as Q-YOLO, which can effectively address the performance degradation problem caused by activation distribution imbalance in traditional quantized YOLO models. Q-YOLO introduces a fully end-to-end Post-Training Quantization (PTQ) pipeline with a well-designed Unilateral Histogram-based (UH) activation quantization scheme, which determines the maximum truncation values through histogram analysis by minimizing the Mean Squared Error (MSE) quantization errors. Extensive experiments on the COCO dataset demonstrate the effectiveness of Q-YOLO, outperforming other PTQ methods while achieving a more favorable balance between accuracy and computational cost. This research contributes to advancing the efficient deployment of object detection models on resource-limited edge devices, enabling real-time detection with reduced computational and memory overhead.
In the treatment of ovarian cancer, precise residual disease prediction is significant for clinical and surgical decision-making. However, traditional methods are either invasive (e.g., laparoscopy) or time-consuming (e.g., manual analysis). Recently, deep learning methods make many efforts in automatic analysis of medical images. Despite the remarkable progress, most of them underestimated the importance of 3D image information of disease, which might brings a limited performance for residual disease prediction, especially in small-scale datasets. To this end, in this paper, we propose a novel Multi-View Attention Learning (MuVAL) method for residual disease prediction, which focuses on the comprehensive learning of 3D Computed Tomography (CT) images in a multi-view manner. Specifically, we first obtain multi-view of 3D CT images from transverse, coronal and sagittal views. To better represent the image features in a multi-view manner, we further leverage attention mechanism to help find the more relevant slices in each view. Extensive experiments on a dataset of 111 patients show that our method outperforms existing deep-learning methods.
Deep learning (DL) has proven highly effective for ultrasound-based computer-aided diagnosis (CAD) of breast cancers. In an automaticCAD system, lesion detection is critical for the following diagnosis. However, existing DL-based methods generally require voluminous manually-annotated region of interest (ROI) labels and class labels to train both the lesion detection and diagnosis models. In clinical practice, the ROI labels, i.e. ground truths, may not always be optimal for the classification task due to individual experience of sonologists, resulting in the issue of coarse annotation that limits the diagnosis performance of a CAD model. To address this issue, a novel Two-Stage Detection and Diagnosis Network (TSDDNet) is proposed based on weakly supervised learning to enhance diagnostic accuracy of the ultrasound-based CAD for breast cancers. In particular, all the ROI-level labels are considered as coarse labels in the first training stage, and then a candidate selection mechanism is designed to identify optimallesion areas for both the fully and partially annotated samples. It refines the current ROI-level labels in the fully annotated images and the detected ROIs in the partially annotated samples with a weakly supervised manner under the guidance of class labels. In the second training stage, a self-distillation strategy further is further proposed to integrate the detection network and classification network into a unified framework as the final CAD model for joint optimization, which then further improves the diagnosis performance. The proposed TSDDNet is evaluated on a B-mode ultrasound dataset, and the experimental results show that it achieves the best performance on both lesion detection and diagnosis tasks, suggesting promising application potential.
The multi-scale information among the whole slide images (WSIs) is essential for cancer diagnosis. Although the existing multi-scale vision Transformer has shown its effectiveness for learning multi-scale image representation, it still cannot work well on the gigapixel WSIs due to their extremely large image sizes. To this end, we propose a novel Multi-scale Efficient Graph-Transformer (MEGT) framework for WSI classification. The key idea of MEGT is to adopt two independent Efficient Graph-based Transformer (EGT) branches to process the low-resolution and high-resolution patch embeddings (i.e., tokens in a Transformer) of WSIs, respectively, and then fuse these tokens via a multi-scale feature fusion module (MFFM). Specifically, we design an EGT to efficiently learn the local-global information of patch tokens, which integrates the graph representation into Transformer to capture spatial-related information of WSIs. Meanwhile, we propose a novel MFFM to alleviate the semantic gap among different resolution patches during feature fusion, which creates a non-patch token for each branch as an agent to exchange information with another branch by cross-attention. In addition, to expedite network training, a novel token pruning module is developed in EGT to reduce the redundant tokens. Extensive experiments on TCGA-RCC and CAMELYON16 datasets demonstrate the effectiveness of the proposed MEGT.
Multi-modal Magnetic Resonance Imaging (MRI) plays an important role in clinical medicine. However, the acquisitions of some modalities, such as the T2-weighted modality, need a long time and they are always accompanied by motion artifacts. On the other hand, the T1-weighted image (T1WI) shares the same underlying information with T2-weighted image (T2WI), which needs a shorter scanning time. Therefore, in this paper we accelerate the acquisition of the T2WI by introducing the auxiliary modality (T1WI). Concretely, we first reconstruct high-quality T2WIs with under-sampled T2WIs. Here, we realize fast T2WI reconstruction by reducing the sampling rate in the k-space. Second, we establish a cross-modal synthesis task to generate the synthetic T2WIs for guiding better T2WI reconstruction. Here, we obtain the synthetic T2WIs by decomposing the whole cross-modal generation mapping into two OT processes, the spatial alignment mapping on the T1 image manifold and the cross-modal synthesis mapping from aligned T1WIs to T2WIs. It overcomes the negative transfer caused by the spatial misalignment. Then, we prove the reconstruction and the synthesis tasks are well complementary. Finally, we compare it with state-of-the-art approaches on an open dataset FastMRI and an in-house dataset to testify the validity of the proposed method.
Fast and accurate MRI reconstruction is a key concern in modern clinical practice. Recently, numerous Deep-Learning methods have been proposed for MRI reconstruction, however, they usually fail to reconstruct sharp details from the subsampled k-space data. To solve this problem, we propose a lightweight and accurate Edge Attention MRI Reconstruction Network (EAMRI) to reconstruct images with edge guidance. Specifically, we design an efficient Edge Prediction Network to directly predict accurate edges from the blurred image. Meanwhile, we propose a novel Edge Attention Module (EAM) to guide the image reconstruction utilizing the extracted edge priors, as inspired by the popular self-attention mechanism. EAM first projects the input image and edges into Q_image, K_edge, and V_image, respectively. Then EAM pairs the Q_image with K_edge along the channel dimension, such that 1) it can search globally for the high-frequency image features that are activated by the edge priors; 2) the overall computation burdens are largely reduced compared with the traditional spatial-wise attention. With the help of EAM, the predicted edge priors can effectively guide the model to reconstruct high-quality MR images with accurate edges. Extensive experiments show that our proposed EAMRI outperforms other methods with fewer parameters and can recover more accurate edges.
Varicolored haze caused by chromatic casts poses haze removal and depth estimation challenges. Recent learning-based depth estimation methods are mainly targeted at dehazing first and estimating depth subsequently from haze-free scenes. This way, the inner connections between colored haze and scene depth are lost. In this paper, we propose a real-time transformer for simultaneous single image Depth Estimation and Haze Removal (DEHRFormer). DEHRFormer consists of a single encoder and two task-specific decoders. The transformer decoders with learnable queries are designed to decode coupling features from the task-agnostic encoder and project them into clean image and depth map, respectively. In addition, we introduce a novel learning paradigm that utilizes contrastive learning and domain consistency learning to tackle weak-generalization problem for real-world dehazing, while predicting the same depth map from the same scene with varicolored haze. Experiments demonstrate that DEHRFormer achieves significant performance improvement across diverse varicolored haze scenes over previous depth estimation networks and dehazing approaches.