Embodied agents, in the form of virtual agents or social robots, are rapidly becoming more widespread. In human-human interactions, humans use nonverbal behaviours to convey their attitudes, feelings, and intentions. Therefore, this capability is also required for embodied agents in order to enhance the quality and effectiveness of their interactions with humans. In this paper, we propose a novel framework that can generate sequences of joint angles from the speech text and speech audio utterances. Based on a conditional Generative Adversarial Network (GAN), our proposed neural network model learns the relationships between the co-speech gestures and both semantic and acoustic features from the speech input. In order to train our neural network model, we employ a public dataset containing co-speech gestures with corresponding speech audio utterances, which were captured from a single male native English speaker. The results from both objective and subjective evaluations demonstrate the efficacy of our gesture-generation framework for Robots and Embodied Agents.
Short-video recommendation is one of the most important recommendation applications in today's industrial information systems. Compared with other recommendation tasks, the enormous amount of feedback is the most typical characteristic. Specifically, in short-video recommendation, the easiest-to-collect user feedback is from the skipping behaviors, which leads to two critical challenges for the recommendation model. First, the skipping behavior reflects implicit user preferences, and thus it is challenging for interest extraction. Second, the kind of special feedback involves multiple objectives, such as total watching time, which is also very challenging. In this paper, we present our industrial solution in Kuaishou, which serves billion-level users every day. Specifically, we deploy a feedback-aware encoding module which well extracts user preference taking the impact of context into consideration. We further design a multi-objective prediction module which well distinguishes the relation and differences among different model objectives in the short-video recommendation. We conduct extensive online A/B testing, along with detailed and careful analysis, which verifies the effectiveness of our solution.
While most research into speech synthesis has focused on synthesizing high-quality speech for in-dataset speakers, an equally essential yet unsolved problem is synthesizing speech for unseen speakers who are out-of-dataset with limited reference data, i.e., speaker adaptive speech synthesis. Many studies have proposed zero-shot speaker adaptive text-to-speech and voice conversion approaches aimed at this task. However, most current approaches suffer from the degradation of naturalness and speaker similarity when synthesizing speech for unseen speakers (i.e., speakers not in the training dataset) due to the poor generalizability of the model in out-of-distribution data. To address this problem, we propose GZS-TV, a generalizable zero-shot speaker adaptive text-to-speech and voice conversion model. GZS-TV introduces disentangled representation learning for both speaker embedding extraction and timbre transformation to improve model generalization and leverages the representation learning capability of the variational autoencoder to enhance the speaker encoder. Our experiments demonstrate that GZS-TV reduces performance degradation on unseen speakers and outperforms all baseline models in multiple datasets.
Increasing the size of embedding layers has shown to be effective in improving the performance of recommendation models, yet gradually causing their sizes to exceed terabytes in industrial recommender systems, and hence the increase of computing and storage costs. To save resources while maintaining model performances, we propose SHARK, the model compression practice we have summarized in the recommender system of industrial scenarios. SHARK consists of two main components. First, we use the novel first-order component of Taylor expansion as importance scores to prune the number of embedding tables (feature fields). Second, we introduce a new row-wise quantization method to apply different quantization strategies to each embedding. We conduct extensive experiments on both public and industrial datasets, demonstrating that each component of our proposed SHARK framework outperforms previous approaches. We conduct A/B tests in multiple models on Kuaishou, such as short video, e-commerce, and advertising recommendation models. The results of the online A/B test showed SHARK can effectively reduce the memory footprint of the embedded layer. For the short-video scenarios, the compressed model without any performance drop significantly saves 70% storage and thousands of machines, improves 30\% queries per second (QPS), and has been deployed to serve hundreds of millions of users and process tens of billions of requests every day.
Sequential recommendation is one of the most important tasks in recommender systems, which aims to recommend the next interacted item with historical behaviors as input. Traditional sequential recommendation always mainly considers the collected positive feedback such as click, purchase, etc. However, in short-video platforms such as TikTok, video viewing behavior may not always represent positive feedback. Specifically, the videos are played automatically, and users passively receive the recommended videos. In this new scenario, users passively express negative feedback by skipping over videos they do not like, which provides valuable information about their preferences. Different from the negative feedback studied in traditional recommender systems, this passive-negative feedback can reflect users' interests and serve as an important supervision signal in extracting users' preferences. Therefore, it is essential to carefully design and utilize it in this novel recommendation scenario. In this work, we first conduct analyses based on a large-scale real-world short-video behavior dataset and illustrate the significance of leveraging passive feedback. We then propose a novel method that deploys the sub-interest encoder, which incorporates positive feedback and passive-negative feedback as supervision signals to learn the user's current active sub-interest. Moreover, we introduce an adaptive fusion layer to integrate various sub-interests effectively. To enhance the robustness of our model, we then introduce a multi-task learning module to simultaneously optimize two kinds of feedback -- passive-negative feedback and traditional randomly-sampled negative feedback. The experiments on two large-scale datasets verify that the proposed method can significantly outperform state-of-the-art approaches. The code is released at https://github.com/tsinghua-fib-lab/RecSys2023-SINE.
Graph Neural Networks (GNNs) have demonstrated promising results on exploiting node representations for many downstream tasks through supervised end-to-end training. To deal with the widespread label scarcity issue in real-world applications, Graph Contrastive Learning (GCL) is leveraged to train GNNs with limited or even no labels by maximizing the mutual information between nodes in its augmented views generated from the original graph. However, the distribution of graphs remains unconsidered in view generation, resulting in the ignorance of unseen edges in most existing literature, which is empirically shown to be able to improve GCL's performance in our experiments. To this end, we propose to incorporate graph generative adversarial networks (GANs) to learn the distribution of views for GCL, in order to i) automatically capture the characteristic of graphs for augmentations, and ii) jointly train the graph GAN model and the GCL model. Specifically, we present GACN, a novel Generative Adversarial Contrastive learning Network for graph representation learning. GACN develops a view generator and a view discriminator to generate augmented views automatically in an adversarial style. Then, GACN leverages these views to train a GNN encoder with two carefully designed self-supervised learning losses, including the graph contrastive loss and the Bayesian personalized ranking Loss. Furthermore, we design an optimization framework to train all GACN modules jointly. Extensive experiments on seven real-world datasets show that GACN is able to generate high-quality augmented views for GCL and is superior to twelve state-of-the-art baseline methods. Noticeably, our proposed GACN surprisingly discovers that the generated views in data augmentation finally conform to the well-known preferential attachment rule in online networks.
Recommending suitable jobs to users is a critical task in online recruitment platforms, as it can enhance users' satisfaction and the platforms' profitability. While existing job recommendation methods encounter challenges such as the low quality of users' resumes, which hampers their accuracy and practical effectiveness. With the rapid development of large language models (LLMs), utilizing the rich external knowledge encapsulated within them, as well as their powerful capabilities of text processing and reasoning, is a promising way to complete users' resumes for more accurate recommendations. However, directly leveraging LLMs to enhance recommendation results is not a one-size-fits-all solution, as LLMs may suffer from fabricated generation and few-shot problems, which degrade the quality of resume completion. In this paper, we propose a novel LLM-based approach for job recommendation. To alleviate the limitation of fabricated generation for LLMs, we extract accurate and valuable information beyond users' self-description, which helps the LLMs better profile users for resume completion. Specifically, we not only extract users' explicit properties (e.g., skills, interests) from their self-description but also infer users' implicit characteristics from their behaviors for more accurate and meaningful resume completion. Nevertheless, some users still suffer from few-shot problems, which arise due to scarce interaction records, leading to limited guidance for the models in generating high-quality resumes. To address this issue, we propose aligning unpaired low-quality with high-quality generated resumes by Generative Adversarial Networks (GANs), which can refine the resume representations for better recommendation results. Extensive experiments on three large real-world recruitment datasets demonstrate the effectiveness of our proposed method.
Diffusion models based on permutation-equivariant networks can learn permutation-invariant distributions for graph data. However, in comparison to their non-invariant counterparts, we have found that these invariant models encounter greater learning challenges since 1) their effective target distributions exhibit more modes; 2) their optimal one-step denoising scores are the score functions of Gaussian mixtures with more components. Motivated by this analysis, we propose a non-invariant diffusion model, called $\textit{SwinGNN}$, which employs an efficient edge-to-edge 2-WL message passing network and utilizes shifted window based self-attention inspired by SwinTransformers. Further, through systematic ablations, we identify several critical training and sampling techniques that significantly improve the sample quality of graph generation. At last, we introduce a simple post-processing trick, $\textit{i.e.}$, randomly permuting the generated graphs, which provably converts any graph generative model to a permutation-invariant one. Extensive experiments on synthetic and real-world protein and molecule datasets show that our SwinGNN achieves state-of-the-art performances. Our code is released at https://github.com/qiyan98/SwinGNN.
We propose a geometric deep-learning-based framework, TractGeoNet, for performing regression using diffusion magnetic resonance imaging (dMRI) tractography and associated pointwise tissue microstructure measurements. By employing a point cloud representation, TractGeoNet can directly utilize pointwise tissue microstructure and positional information from all points within a fiber tract. To improve regression performance, we propose a novel loss function, the Paired-Siamese Regression loss, which encourages the model to focus on accurately predicting the relative differences between regression label scores rather than just their absolute values. In addition, we propose a Critical Region Localization algorithm to identify highly predictive anatomical regions within the white matter fiber tracts for the regression task. We evaluate the effectiveness of the proposed method by predicting individual performance on two neuropsychological assessments of language using a dataset of 20 association white matter fiber tracts from 806 subjects from the Human Connectome Project. The results demonstrate superior prediction performance of TractGeoNet compared to several popular regression models. Of the twenty tracts studied, we find that the left arcuate fasciculus tract is the most highly predictive of the two studied language performance assessments. The localized critical regions are widespread and distributed across both hemispheres and all cerebral lobes, including areas of the brain considered important for language function such as superior and anterior temporal regions, pars opercularis, and precentral gyrus. Overall, TractGeoNet demonstrates the potential of geometric deep learning to enhance the study of the brain's white matter fiber tracts and to relate their structure to human traits such as language performance.