MR Research Collaboration Team, Siemens Healthineers, Shanghai, China
Abstract:Federated self-supervised learning (FSSL) combines the advantages of decentralized modeling and unlabeled representation learning, serving as a cutting-edge paradigm with strong potential for scalability and privacy preservation. Although FSSL has garnered increasing attention, research indicates that it remains vulnerable to backdoor attacks. Existing methods generally rely on visually obvious triggers, which makes it difficult to meet the requirements for stealth and practicality in real-world deployment. In this paper, we propose an imperceptible and effective backdoor attack method against FSSL, called IPBA. Our empirical study reveals that existing imperceptible triggers face a series of challenges in FSSL, particularly limited transferability, feature entanglement with augmented samples, and out-of-distribution properties. These issues collectively undermine the effectiveness and stealthiness of traditional backdoor attacks in FSSL. To overcome these challenges, IPBA decouples the feature distributions of backdoor and augmented samples, and introduces Sliced-Wasserstein distance to mitigate the out-of-distribution properties of backdoor samples, thereby optimizing the trigger generation process. Our experimental results on several FSSL scenarios and datasets show that IPBA significantly outperforms existing backdoor attack methods in performance and exhibits strong robustness under various defense mechanisms.
Abstract:We propose a deep learning-based approach that integrates MRI sequence parameters to improve the accuracy and generalizability of quantitative image synthesis from clinical weighted MRI. Our physics-driven neural network embeds MRI sequence parameters -- repetition time (TR), echo time (TE), and inversion time (TI) -- directly into the model via parameter embedding, enabling the network to learn the underlying physical principles of MRI signal formation. The model takes conventional T1-weighted, T2-weighted, and T2-FLAIR images as input and synthesizes T1, T2, and proton density (PD) quantitative maps. Trained on healthy brain MR images, it was evaluated on both internal and external test datasets. The proposed method achieved high performance with PSNR values exceeding 34 dB and SSIM values above 0.92 for all synthesized parameter maps. It outperformed conventional deep learning models in accuracy and robustness, including data with previously unseen brain structures and lesions. Notably, our model accurately synthesized quantitative maps for these unseen pathological regions, highlighting its superior generalization capability. Incorporating MRI sequence parameters via parameter embedding allows the neural network to better learn the physical characteristics of MR signals, significantly enhancing the performance and reliability of quantitative MRI synthesis. This method shows great potential for accelerating qMRI and improving its clinical utility.
Abstract:While Vision-Language Models (VLMs) have shown promising progress in general multimodal tasks, they often struggle in industrial anomaly detection and reasoning, particularly in delivering interpretable explanations and generalizing to unseen categories. This limitation stems from the inherently domain-specific nature of anomaly detection, which hinders the applicability of existing VLMs in industrial scenarios that require precise, structured, and context-aware analysis. To address these challenges, we propose SAGE, a VLM-based framework that enhances anomaly reasoning through Self-Guided Fact Enhancement (SFE) and Entropy-aware Direct Preference Optimization (E-DPO). SFE integrates domain-specific knowledge into visual reasoning via fact extraction and fusion, while E-DPO aligns model outputs with expert preferences using entropy-aware optimization. Additionally, we introduce AD-PL, a preference-optimized dataset tailored for industrial anomaly reasoning, consisting of 28,415 question-answering instances with expert-ranked responses. To evaluate anomaly reasoning models, we develop Multiscale Logical Evaluation (MLE), a quantitative framework analyzing model logic and consistency. SAGE demonstrates superior performance on industrial anomaly datasets under zero-shot and one-shot settings. The code, model and dataset are available at https://github.com/amoreZgx1n/SAGE.
Abstract:The rapid growth of online video content, especially on short video platforms, has created a growing demand for efficient video editing techniques that can condense long-form videos into concise and engaging clips. Existing automatic editing methods predominantly rely on textual cues from ASR transcripts and end-to-end segment selection, often neglecting the rich visual context and leading to incoherent outputs. In this paper, we propose a human-inspired automatic video editing framework (HIVE) that leverages multimodal narrative understanding to address these limitations. Our approach incorporates character extraction, dialogue analysis, and narrative summarization through multimodal large language models, enabling a holistic understanding of the video content. To further enhance coherence, we apply scene-level segmentation and decompose the editing process into three subtasks: highlight detection, opening/ending selection, and pruning of irrelevant content. To facilitate research in this area, we introduce DramaAD, a novel benchmark dataset comprising over 800 short drama episodes and 500 professionally edited advertisement clips. Experimental results demonstrate that our framework consistently outperforms existing baselines across both general and advertisement-oriented editing tasks, significantly narrowing the quality gap between automatic and human-edited videos.
Abstract:Multimodal pathology-genomic analysis is critical for cancer survival prediction. However, existing approaches predominantly integrate formalin-fixed paraffin-embedded (FFPE) slides with genomic data, while neglecting the availability of other preservation slides, such as Fresh Froze (FF) slides. Moreover, as the high-resolution spatial nature of pathology data tends to dominate the cross-modality fusion process, it hinders effective multimodal fusion and leads to modality imbalance challenges between pathology and genomics. These methods also typically require complete data modalities, limiting their clinical applicability with incomplete modalities, such as missing either pathology or genomic data. In this paper, we propose a multimodal survival prediction framework that leverages hypergraph learning to effectively integrate multi-WSI information and cross-modality interactions between pathology slides and genomics data while addressing modality imbalance. In addition, we introduce a memory mechanism that stores previously learned paired pathology-genomic features and dynamically compensates for incomplete modalities. Experiments on five TCGA datasets demonstrate that our model outperforms advanced methods by over 2.3% in C-Index. Under incomplete modality scenarios, our approach surpasses pathology-only (3.3%) and gene-only models (7.9%). Code: https://github.com/MCPathology/M2Surv
Abstract:Open-domain question answering (OpenQA) represents a cornerstone in natural language processing (NLP), primarily focused on extracting answers from unstructured textual data. With the rapid advancements in Large Language Models (LLMs), LLM-based OpenQA methods have reaped the benefits of emergent understanding and answering capabilities enabled by massive parameters compared to traditional methods. However, most of these methods encounter two critical challenges: how to integrate knowledge into LLMs effectively and how to adaptively generate results with specific answer formats for various task situations. To address these challenges, we propose a novel framework named GenKI, which aims to improve the OpenQA performance by exploring Knowledge Integration and controllable Generation on LLMs simultaneously. Specifically, we first train a dense passage retrieval model to retrieve associated knowledge from a given knowledge base. Subsequently, we introduce a novel knowledge integration model that incorporates the retrieval knowledge into instructions during fine-tuning to intensify the model. Furthermore, to enable controllable generation in LLMs, we leverage a certain fine-tuned LLM and an ensemble based on text consistency incorporating all coherence, fluency, and answer format assurance. Finally, extensive experiments conducted on the TriviaQA, MSMARCO, and CMRC2018 datasets, featuring diverse answer formats, have demonstrated the effectiveness of GenKI with comparison of state-of-the-art baselines. Moreover, ablation studies have disclosed a linear relationship between the frequency of retrieved knowledge and the model's ability to recall knowledge accurately against the ground truth. Our code of GenKI is available at https://github.com/USTC-StarTeam/GenKI
Abstract:Existing methods for multimodal MRI segmentation with missing modalities typically assume that all MRI modalities are available during training. However, in clinical practice, some modalities may be missing due to the sequential nature of MRI acquisition, leading to performance degradation. Furthermore, retraining models to accommodate newly available modalities can be inefficient and may cause overfitting, potentially compromising previously learned knowledge. To address these challenges, we propose Replay-based Hypergraph Domain Incremental Learning (ReHyDIL) for brain tumor segmentation with missing modalities. ReHyDIL leverages Domain Incremental Learning (DIL) to enable the segmentation model to learn from newly acquired MRI modalities without forgetting previously learned information. To enhance segmentation performance across diverse patient scenarios, we introduce the Cross-Patient Hypergraph Segmentation Network (CHSNet), which utilizes hypergraphs to capture high-order associations between patients. Additionally, we incorporate Tversky-Aware Contrastive (TAC) loss to effectively mitigate information imbalance both across and within different modalities. Extensive experiments on the BraTS2019 dataset demonstrate that ReHyDIL outperforms state-of-the-art methods, achieving an improvement of over 2\% in the Dice Similarity Coefficient across various tumor regions. Our code is available at ReHyDIL.
Abstract:Large Language Models (LLMs) are trained on diverse and often conflicting knowledge spanning multiple domains and time periods. Some of this knowledge is only valid within specific temporal contexts, such as answering the question, "Who is the President of the United States in 2022?" Ensuring LLMs generate time appropriate responses is crucial for maintaining relevance and accuracy. In this work we explore activation engineering as a method for temporally aligning LLMs to improve factual recall without any training or dataset creation. In this research we explore an activation engineering technique to ground three versions of LLaMA 2 to specific points in time and examine the effects of varying injection layers and prompting strategies. Our experiments demonstrate up to a 44% and 16% improvement in relative and explicit prompting respectively, achieving comparable performance to the fine-tuning method proposed by Zhao et al. (2024) . Notably, our approach achieves similar results to the fine-tuning baseline while being significantly more computationally efficient and requiring no pre-aligned datasets.
Abstract:Multimodal pathology-genomic analysis has become increasingly prominent in cancer survival prediction. However, existing studies mainly utilize multi-instance learning to aggregate patch-level features, neglecting the information loss of contextual and hierarchical details within pathology images. Furthermore, the disparity in data granularity and dimensionality between pathology and genomics leads to a significant modality imbalance. The high spatial resolution inherent in pathology data renders it a dominant role while overshadowing genomics in multimodal integration. In this paper, we propose a multimodal survival prediction framework that incorporates hypergraph learning to effectively capture both contextual and hierarchical details from pathology images. Moreover, it employs a modality rebalance mechanism and an interactive alignment fusion strategy to dynamically reweight the contributions of the two modalities, thereby mitigating the pathology-genomics imbalance. Quantitative and qualitative experiments are conducted on five TCGA datasets, demonstrating that our model outperforms advanced methods by over 3.4\% in C-Index performance.
Abstract:Bearing-only tracking, localisation, and circumnavigation is a problem in which a single or a group of agents attempts to track a target while circumnavigating it at a fixed distance using only bearing measurements. While previous studies have addressed scenarios involving stationary targets or those moving with an unknown constant velocity, the challenge of accurately tracking a target moving with a time-varying velocity remains open. This paper presents an approach utilising a Long Short-Term Memory (LSTM) based estimator for predicting the target's position and velocity. We also introduce a corresponding control strategy. When evaluated against previously proposed estimation and circumnavigation approaches, our approach demonstrates significantly lower control and estimation errors across various time-varying velocity scenarios. Additionally, we illustrate the effectiveness of the proposed method in tracking targets with a double integrator nonholonomic system dynamics that mimic real-world systems.