Abstract:Multi-behavior sequential recommendation aims to capture users' dynamic interests by modeling diverse types of user interactions over time. Although several studies have explored this setting, the recommendation performance remains suboptimal, mainly due to two fundamental challenges: the heterogeneity of user behaviors and data sparsity. To address these challenges, we propose BLADE, a framework that enhances multi-behavior modeling while mitigating data sparsity. Specifically, to handle behavior heterogeneity, we introduce a dual item-behavior fusion architecture that incorporates behavior information at both the input and intermediate levels, enabling preference modeling from multiple perspectives. To mitigate data sparsity, we design three behavior-level data augmentation methods that operate directly on behavior sequences rather than core item sequences. These methods generate diverse augmented views while preserving the semantic consistency of item sequences. These augmented views further enhance representation learning and generalization via contrastive learning. Experiments on three real-world datasets demonstrate the effectiveness of our approach.
Abstract:Time series generation is critical for a wide range of applications, which greatly supports downstream analytical and decision-making tasks. However, the inherent temporal heterogeneous induced by localized perturbations present significant challenges for generating structurally consistent time series. While flow matching provides a promising paradigm by modeling temporal dynamics through trajectory-level supervision, it fails to adequately capture abrupt transitions in perturbed time series, as the use of globally shared parameters constrains the velocity field to a unified representation. To address these limitations, we introduce \textbf{PAFM}, a \textbf{P}erturbation-\textbf{A}ware \textbf{F}low \textbf{M}atching framework that models perturbed trajectories to ensure stable and structurally consistent time series generation. The framework incorporates perturbation-guided training to simulate localized disturbances and leverages a dual-path velocity field to capture trajectory deviations under perturbation, enabling refined modeling of perturbed behavior to enhance the structural coherence. In order to further improve sensitivity to trajectory perturbations while enhancing expressiveness, a mixture-of-experts decoder with flow routing dynamically allocates modeling capacity in response to different trajectory dynamics. Extensive experiments on both unconditional and conditional generation tasks demonstrate that PAFM consistently outperforms strong baselines. Code is available at https://anonymous.4open.science/r/PAFM-03B2.
Abstract:Large Language Models (LLMs) are increasingly being explored for building Agents capable of active environmental interaction (e.g., via tool use) to solve complex problems. Reinforcement Learning (RL) is considered a key technology with significant potential for training such Agents; however, the effective application of RL to LLM Agents is still in its nascent stages and faces considerable challenges. Currently, this emerging field lacks in-depth exploration into RL approaches specifically tailored for the LLM Agent context, alongside a scarcity of flexible and easily extensible training frameworks designed for this purpose. To help advance this area, this paper first revisits and clarifies Reinforcement Learning methodologies for LLM Agents by systematically extending the Markov Decision Process (MDP) framework to comprehensively define the key components of an LLM Agent. Secondly, we introduce Agent-R1, a modular, flexible, and user-friendly training framework for RL-based LLM Agents, designed for straightforward adaptation across diverse task scenarios and interactive environments. We conducted experiments on Multihop QA benchmark tasks, providing initial validation for the effectiveness of our proposed methods and framework.
Abstract:Table reasoning with the large language models (LLMs) is a fundamental path toward building intelligent systems that can understand and analyze over structured data. While recent progress has shown promising results, they still suffer from two key limitations: (i) the reasoning processes lack the depth and iterative refinement characteristic of human cognition; and (ii) the reasoning processes exhibit instability, which compromises their reliability in downstream applications. In this work, we present STaR (slow-thinking for table reasoning), a new framework achieving cognitive table reasoning, in which LLMs are equipped with slow-thinking capabilities by explicitly modeling step-by-step thinking and uncertainty-aware inference. During training, STaR employs two-stage difficulty-aware reinforcement learning (DRL), progressively learning from simple to complex queries under a composite reward. During inference, STaR performs trajectory-level uncertainty quantification by integrating token-level confidence and answer consistency, enabling selection of more credible reasoning paths. Extensive experiments on benchmarks demonstrate that STaR achieves superior performance and enhanced reasoning stability. Moreover, strong generalization over out-of-domain datasets further demonstrates STaR's potential as a reliable and cognitively inspired solution for table reasoning with LLMs.
Abstract:Time series forecasting plays a critical role in high-stakes domains such as energy, healthcare, and climate. Although recent advances have improved accuracy, most approaches still treat forecasting as a static one-time mapping task, lacking the interaction, reasoning, and adaptability of human experts. This gap limits their usefulness in complex real-world environments. To address this, we propose AlphaCast, a human wisdom-large language model (LLM) intelligence co-reasoning framework that redefines forecasting as an interactive process. The key idea is to enable step-by-step collaboration between human wisdom and LLM intelligence to jointly prepare, generate, and verify forecasts. The framework consists of two stages: (1) automated prediction preparation, where AlphaCast builds a multi-source cognitive foundation comprising a feature set that captures key statistics and time patterns, a domain knowledge base distilled from corpora and historical series, a contextual repository that stores rich information for each time window, and a case base that retrieves optimal strategies via pattern clustering and matching; and (2) generative reasoning and reflective optimization, where AlphaCast integrates statistical temporal features, prior knowledge, contextual information, and forecasting strategies, triggering a meta-reasoning loop for continuous self-correction and strategy refinement. Extensive experiments on short- and long-term datasets show that AlphaCast consistently outperforms state-of-the-art baselines in predictive accuracy. Code is available at this repository: https://github.com/SkyeGT/AlphaCast_Official .




Abstract:The primary form of user-internet engagement is shifting from leveraging implicit feedback signals, such as browsing and clicks, to harnessing the rich explicit feedback provided by textual interactive behaviors. This shift unlocks a rich source of user textual history, presenting a profound opportunity for a deeper form of personalization. However, prevailing approaches offer only a shallow form of personalization, as they treat user history as a flat list of texts for retrieval and fail to model the rich temporal and semantic structures reflecting dynamic nature of user interests. In this work, we propose \textbf{MemWeaver}, a framework that weaves the user's entire textual history into a hierarchical memory to power deeply personalized generation. The core innovation of our memory lies in its ability to capture both the temporal evolution of interests and the semantic relationships between different activities. To achieve this, MemWeaver builds two complementary memory components that both integrate temporal and semantic information, but at different levels of abstraction: behavioral memory, which captures specific user actions, and cognitive memory, which represents long-term preferences. This dual-component memory serves as a unified representation of the user, allowing large language models (LLMs) to reason over both concrete behaviors and abstracted traits. Experiments on the Language Model Personalization (LaMP) benchmark validate the efficacy of MemWeaver. Our code is available\footnote{https://github.com/fishsure/MemWeaver}.




Abstract:Sequential recommendation predicts each user's next item based on their historical interaction sequence. Recently, diffusion models have attracted significant attention in this area due to their strong ability to model user interest distributions. They typically generate target items by denoising Gaussian noise conditioned on historical interactions. However, these models face two critical limitations. First, they exhibit high sensitivity to the condition, making it difficult to recover target items from pure Gaussian noise. Second, the inference process is computationally expensive, limiting practical deployment. To address these issues, we propose FlowRec, a simple yet effective sequential recommendation framework which leverages flow matching to explicitly model user preference trajectories from current states to future interests. Flow matching is an emerging generative paradigm, which offers greater flexibility in initial distributions and enables more efficient sampling. Based on this, we construct a personalized behavior-based prior distribution to replace Gaussian noise and learn a vector field to model user preference trajectories. To better align flow matching with the recommendation objective, we further design a single-step alignment loss incorporating both positive and negative samples, improving sampling efficiency and generation quality. Extensive experiments on four benchmark datasets verify the superiority of FlowRec over the state-of-the-art baselines.
Abstract:Chemical tables encode complex experimental knowledge through symbolic expressions, structured variables, and embedded molecular graphics. Existing benchmarks largely overlook this multimodal and domain-specific complexity, limiting the ability of multimodal large language models to support scientific understanding in chemistry. In this work, we introduce ChemTable, a large-scale benchmark of real-world chemical tables curated from the experimental sections of literature. ChemTable includes expert-annotated cell polygons, logical layouts, and domain-specific labels, including reagents, catalysts, yields, and graphical components and supports two core tasks: (1) Table Recognition, covering structure parsing and content extraction; and (2) Table Understanding, encompassing both descriptive and reasoning-oriented question answering grounded in table structure and domain semantics. We evaluated a range of representative multimodal models, including both open-source and closed-source models, on ChemTable and reported a series of findings with practical and conceptual insights. Although models show reasonable performance on basic layout parsing, they exhibit substantial limitations on both descriptive and inferential QA tasks compared to human performance, and we observe significant performance gaps between open-source and closed-source models across multiple dimensions. These results underscore the challenges of chemistry-aware table understanding and position ChemTable as a rigorous and realistic benchmark for advancing scientific reasoning.




Abstract:To advance time series forecasting (TSF), various methods have been proposed to improve prediction accuracy, evolving from statistical techniques to data-driven deep learning architectures. Despite their effectiveness, most existing methods still adhere to a fast thinking paradigm-relying on extracting historical patterns and mapping them to future values as their core modeling philosophy, lacking an explicit thinking process that incorporates intermediate time series reasoning. Meanwhile, emerging slow-thinking LLMs (e.g., OpenAI-o1) have shown remarkable multi-step reasoning capabilities, offering an alternative way to overcome these issues. However, prompt engineering alone presents several limitations - including high computational cost, privacy risks, and limited capacity for in-depth domain-specific time series reasoning. To address these limitations, a more promising approach is to train LLMs to develop slow thinking capabilities and acquire strong time series reasoning skills. For this purpose, we propose Time-R1, a two-stage reinforcement fine-tuning framework designed to enhance multi-step reasoning ability of LLMs for time series forecasting. Specifically, the first stage conducts supervised fine-tuning for warmup adaptation, while the second stage employs reinforcement learning to improve the model's generalization ability. Particularly, we design a fine-grained multi-objective reward specifically for time series forecasting, and then introduce GRIP (group-based relative importance for policy optimization), which leverages non-uniform sampling to further encourage and optimize the model's exploration of effective reasoning paths. Experiments demonstrate that Time-R1 significantly improves forecast performance across diverse datasets.
Abstract:Neuro-symbolic approaches combining large language models (LLMs) with solvers excels in logical reasoning problems need long reasoning chains. In this paradigm, LLMs serve as translators, converting natural language reasoning problems into formal logic formulas. Then reliable symbolic solvers return correct solutions. Despite their success, we find that LLMs, as translators, struggle to handle lexical diversification, a common linguistic phenomenon, indicating that LLMs as logic translators are unreliable in real-world scenarios. Moreover, existing logical reasoning benchmarks lack lexical diversity, failing to challenge LLMs' ability to translate such text and thus obscuring this issue. In this work, we propose SCALe, a benchmark designed to address this significant gap through **logic-invariant lexical diversification**. By using LLMs to transform original benchmark datasets into lexically diversified but logically equivalent versions, we evaluate LLMs' ability to consistently map diverse expressions to uniform logical symbols on these new datasets. Experiments using SCALe further confirm that current LLMs exhibit deficiencies in this capability. Building directly on the deficiencies identified through our benchmark, we propose a new method, MenTaL, to address this limitation. This method guides LLMs to first construct a table unifying diverse expressions before performing translation. Applying MenTaL through in-context learning and supervised fine-tuning (SFT) significantly improves the performance of LLM translators on lexically diversified text. Our code is now available at https://github.com/wufeiwuwoshihua/LexicalDiver.