Abstract:Most existing time series classification methods adopt a discriminative paradigm that maps input sequences directly to one-hot encoded class labels. While effective, this paradigm struggles to incorporate contextual features and fails to capture semantic relationships among classes. To address these limitations, we propose InstructTime, a novel framework that reformulates time series classification as a multimodal generative task. Specifically, continuous numerical sequences, contextual textual features, and task instructions are treated as multimodal inputs, while class labels are generated as textual outputs by tuned language models. To bridge the modality gap, InstructTime introduces a time series discretization module that converts continuous sequences into discrete temporal tokens, together with an alignment projection layer and a generative self-supervised pre-training strategy to enhance cross-modal representation alignment. Building upon this framework, we further propose InstructTime++, which extends InstructTime by incorporating implicit feature modeling to compensate for the limited inductive bias of language models. InstructTime++ leverages specialized toolkits to mine informative implicit patterns from raw time series and contextual inputs, including statistical feature extraction and vision-language-based image captioning, and translates them into textual descriptions for seamless integration. Extensive experiments on multiple benchmark datasets demonstrate the superior performance of InstructTime++.
Abstract:Academic paper search is a fundamental task in scientific research, yet most existing approaches rely on rigid, predefined workflows that struggle with complex, conditional queries. To address this limitation, we propose PaperScout, an autonomous agent that reformulates paper search as a sequential decision-making process. Unlike static workflows, PaperScout dynamically decides whether, when, and how to invoke search and expand tools based on accumulated retrieval context. However, training such agents presents a fundamental challenge: standard reinforcement learning methods, typically designed for single-turn tasks, suffer from a granularity mismatch when applied to multi-turn agentic tasks, where token-level optimization diverges from the granularity of sequence-level interactions, leading to noisy credit assignment. We introduce Proximal Sequence Policy Optimization (PSPO), a process-aware, sequence-level policy optimization method that aligns optimization with agent-environment interaction. Comprehensive experiments on both synthetic and real-world benchmarks demonstrate that PaperScout significantly outperforms strong workflow-driven and RL baselines in both recall and relevance, validating the effectiveness of our adaptive agentic framework and optimization strategy.
Abstract:Time series are highly valuable and rarely shareable across nodes, making federated learning a promising paradigm to leverage distributed temporal data. However, different sampling standards lead to diverse time granularities and variable sets across nodes, hindering classical federated learning. We propose PiXTime, a novel time series forecasting model designed for federated learning that enables effective prediction across nodes with multi-granularity and heterogeneous variable sets. PiXTime employs a personalized Patch Embedding to map node-specific granularity time series into token sequences of a unified dimension for processing by a subsequent shared model, and uses a global VE Table to align variable category semantics across nodes, thereby enhancing cross-node transferability. With a transformer-based shared model, PiXTime captures representations of auxiliary series with arbitrary numbers of variables and uses cross-attention to enhance the prediction of the target series. Experiments show PiXTime achieves state-of-the-art performance in federated settings and demonstrates superior performance on eight widely used real-world traditional benchmarks.
Abstract:Synthesizing informative commercial reports from massive and noisy web sources is critical for high-stakes business decisions. Although current deep research agents achieve notable progress, their reports still remain limited in terms of quality, reliability, and coverage. In this work, we propose Mind2Report, a cognitive deep research agent that emulates the commercial analyst to synthesize expert-level reports. Specifically, it first probes fine-grained intent, then searches web sources and records distilled information on the fly, and subsequently iteratively synthesizes the report. We design Mind2Report as a training-free agentic workflow that augments general large language models (LLMs) with dynamic memory to support these long-form cognitive processes. To rigorously evaluate Mind2Report, we further construct QRC-Eval comprising 200 real-world commercial tasks and establish a holistic evaluation strategy to assess report quality, reliability, and coverage. Experiments demonstrate that Mind2Report outperforms leading baselines, including OpenAI and Gemini deep research agents. Although this is a preliminary study, we expect it to serve as a foundation for advancing the future design of commercial deep research agents. Our code and data are available at https://github.com/Melmaphother/Mind2Report.
Abstract:Multi-behavior sequential recommendation aims to capture users' dynamic interests by modeling diverse types of user interactions over time. Although several studies have explored this setting, the recommendation performance remains suboptimal, mainly due to two fundamental challenges: the heterogeneity of user behaviors and data sparsity. To address these challenges, we propose BLADE, a framework that enhances multi-behavior modeling while mitigating data sparsity. Specifically, to handle behavior heterogeneity, we introduce a dual item-behavior fusion architecture that incorporates behavior information at both the input and intermediate levels, enabling preference modeling from multiple perspectives. To mitigate data sparsity, we design three behavior-level data augmentation methods that operate directly on behavior sequences rather than core item sequences. These methods generate diverse augmented views while preserving the semantic consistency of item sequences. These augmented views further enhance representation learning and generalization via contrastive learning. Experiments on three real-world datasets demonstrate the effectiveness of our approach.




Abstract:Time series generation is critical for a wide range of applications, which greatly supports downstream analytical and decision-making tasks. However, the inherent temporal heterogeneous induced by localized perturbations present significant challenges for generating structurally consistent time series. While flow matching provides a promising paradigm by modeling temporal dynamics through trajectory-level supervision, it fails to adequately capture abrupt transitions in perturbed time series, as the use of globally shared parameters constrains the velocity field to a unified representation. To address these limitations, we introduce \textbf{PAFM}, a \textbf{P}erturbation-\textbf{A}ware \textbf{F}low \textbf{M}atching framework that models perturbed trajectories to ensure stable and structurally consistent time series generation. The framework incorporates perturbation-guided training to simulate localized disturbances and leverages a dual-path velocity field to capture trajectory deviations under perturbation, enabling refined modeling of perturbed behavior to enhance the structural coherence. In order to further improve sensitivity to trajectory perturbations while enhancing expressiveness, a mixture-of-experts decoder with flow routing dynamically allocates modeling capacity in response to different trajectory dynamics. Extensive experiments on both unconditional and conditional generation tasks demonstrate that PAFM consistently outperforms strong baselines. Code is available at https://anonymous.4open.science/r/PAFM-03B2.
Abstract:Large Language Models (LLMs) are increasingly being explored for building Agents capable of active environmental interaction (e.g., via tool use) to solve complex problems. Reinforcement Learning (RL) is considered a key technology with significant potential for training such Agents; however, the effective application of RL to LLM Agents is still in its nascent stages and faces considerable challenges. Currently, this emerging field lacks in-depth exploration into RL approaches specifically tailored for the LLM Agent context, alongside a scarcity of flexible and easily extensible training frameworks designed for this purpose. To help advance this area, this paper first revisits and clarifies Reinforcement Learning methodologies for LLM Agents by systematically extending the Markov Decision Process (MDP) framework to comprehensively define the key components of an LLM Agent. Secondly, we introduce Agent-R1, a modular, flexible, and user-friendly training framework for RL-based LLM Agents, designed for straightforward adaptation across diverse task scenarios and interactive environments. We conducted experiments on Multihop QA benchmark tasks, providing initial validation for the effectiveness of our proposed methods and framework.
Abstract:Table reasoning with the large language models (LLMs) is a fundamental path toward building intelligent systems that can understand and analyze over structured data. While recent progress has shown promising results, they still suffer from two key limitations: (i) the reasoning processes lack the depth and iterative refinement characteristic of human cognition; and (ii) the reasoning processes exhibit instability, which compromises their reliability in downstream applications. In this work, we present STaR (slow-thinking for table reasoning), a new framework achieving cognitive table reasoning, in which LLMs are equipped with slow-thinking capabilities by explicitly modeling step-by-step thinking and uncertainty-aware inference. During training, STaR employs two-stage difficulty-aware reinforcement learning (DRL), progressively learning from simple to complex queries under a composite reward. During inference, STaR performs trajectory-level uncertainty quantification by integrating token-level confidence and answer consistency, enabling selection of more credible reasoning paths. Extensive experiments on benchmarks demonstrate that STaR achieves superior performance and enhanced reasoning stability. Moreover, strong generalization over out-of-domain datasets further demonstrates STaR's potential as a reliable and cognitively inspired solution for table reasoning with LLMs.
Abstract:Time series forecasting plays a critical role in high-stakes domains such as energy, healthcare, and climate. Although recent advances have improved accuracy, most approaches still treat forecasting as a static one-time mapping task, lacking the interaction, reasoning, and adaptability of human experts. This gap limits their usefulness in complex real-world environments. To address this, we propose AlphaCast, a human wisdom-large language model (LLM) intelligence co-reasoning framework that redefines forecasting as an interactive process. The key idea is to enable step-by-step collaboration between human wisdom and LLM intelligence to jointly prepare, generate, and verify forecasts. The framework consists of two stages: (1) automated prediction preparation, where AlphaCast builds a multi-source cognitive foundation comprising a feature set that captures key statistics and time patterns, a domain knowledge base distilled from corpora and historical series, a contextual repository that stores rich information for each time window, and a case base that retrieves optimal strategies via pattern clustering and matching; and (2) generative reasoning and reflective optimization, where AlphaCast integrates statistical temporal features, prior knowledge, contextual information, and forecasting strategies, triggering a meta-reasoning loop for continuous self-correction and strategy refinement. Extensive experiments on short- and long-term datasets show that AlphaCast consistently outperforms state-of-the-art baselines in predictive accuracy. Code is available at this repository: https://github.com/SkyeGT/AlphaCast_Official .




Abstract:The primary form of user-internet engagement is shifting from leveraging implicit feedback signals, such as browsing and clicks, to harnessing the rich explicit feedback provided by textual interactive behaviors. This shift unlocks a rich source of user textual history, presenting a profound opportunity for a deeper form of personalization. However, prevailing approaches offer only a shallow form of personalization, as they treat user history as a flat list of texts for retrieval and fail to model the rich temporal and semantic structures reflecting dynamic nature of user interests. In this work, we propose \textbf{MemWeaver}, a framework that weaves the user's entire textual history into a hierarchical memory to power deeply personalized generation. The core innovation of our memory lies in its ability to capture both the temporal evolution of interests and the semantic relationships between different activities. To achieve this, MemWeaver builds two complementary memory components that both integrate temporal and semantic information, but at different levels of abstraction: behavioral memory, which captures specific user actions, and cognitive memory, which represents long-term preferences. This dual-component memory serves as a unified representation of the user, allowing large language models (LLMs) to reason over both concrete behaviors and abstracted traits. Experiments on the Language Model Personalization (LaMP) benchmark validate the efficacy of MemWeaver. Our code is available\footnote{https://github.com/fishsure/MemWeaver}.