Abstract:To advance time series forecasting (TSF), various methods have been proposed to improve prediction accuracy, evolving from statistical techniques to data-driven deep learning architectures. Despite their effectiveness, most existing methods still adhere to a fast thinking paradigm-relying on extracting historical patterns and mapping them to future values as their core modeling philosophy, lacking an explicit thinking process that incorporates intermediate time series reasoning. Meanwhile, emerging slow-thinking LLMs (e.g., OpenAI-o1) have shown remarkable multi-step reasoning capabilities, offering an alternative way to overcome these issues. However, prompt engineering alone presents several limitations - including high computational cost, privacy risks, and limited capacity for in-depth domain-specific time series reasoning. To address these limitations, a more promising approach is to train LLMs to develop slow thinking capabilities and acquire strong time series reasoning skills. For this purpose, we propose Time-R1, a two-stage reinforcement fine-tuning framework designed to enhance multi-step reasoning ability of LLMs for time series forecasting. Specifically, the first stage conducts supervised fine-tuning for warmup adaptation, while the second stage employs reinforcement learning to improve the model's generalization ability. Particularly, we design a fine-grained multi-objective reward specifically for time series forecasting, and then introduce GRIP (group-based relative importance for policy optimization), which leverages non-uniform sampling to further encourage and optimize the model's exploration of effective reasoning paths. Experiments demonstrate that Time-R1 significantly improves forecast performance across diverse datasets.
Abstract:Neuro-symbolic approaches combining large language models (LLMs) with solvers excels in logical reasoning problems need long reasoning chains. In this paradigm, LLMs serve as translators, converting natural language reasoning problems into formal logic formulas. Then reliable symbolic solvers return correct solutions. Despite their success, we find that LLMs, as translators, struggle to handle lexical diversification, a common linguistic phenomenon, indicating that LLMs as logic translators are unreliable in real-world scenarios. Moreover, existing logical reasoning benchmarks lack lexical diversity, failing to challenge LLMs' ability to translate such text and thus obscuring this issue. In this work, we propose SCALe, a benchmark designed to address this significant gap through **logic-invariant lexical diversification**. By using LLMs to transform original benchmark datasets into lexically diversified but logically equivalent versions, we evaluate LLMs' ability to consistently map diverse expressions to uniform logical symbols on these new datasets. Experiments using SCALe further confirm that current LLMs exhibit deficiencies in this capability. Building directly on the deficiencies identified through our benchmark, we propose a new method, MenTaL, to address this limitation. This method guides LLMs to first construct a table unifying diverse expressions before performing translation. Applying MenTaL through in-context learning and supervised fine-tuning (SFT) significantly improves the performance of LLM translators on lexically diversified text. Our code is now available at https://github.com/wufeiwuwoshihua/LexicalDiver.
Abstract:Time series forecasting (TSF) is a fundamental and widely studied task, spanning methods from classical statistical approaches to modern deep learning and multimodal language modeling. Despite their effectiveness, these methods often follow a fast thinking paradigm emphasizing pattern extraction and direct value mapping, while overlooking explicit reasoning over temporal dynamics and contextual dependencies. Meanwhile, emerging slow-thinking LLMs (e.g., ChatGPT-o1, DeepSeek-R1) have demonstrated impressive multi-step reasoning capabilities across diverse domains, suggesting a new opportunity for reframing TSF as a structured reasoning task. This motivates a key question: can slow-thinking LLMs effectively reason over temporal patterns to support time series forecasting, even in zero-shot manner? To investigate this, in this paper, we propose TimeReasoner, an extensive empirical study that formulates TSF as a conditional reasoning task. We design a series of prompting strategies to elicit inference-time reasoning from pretrained slow-thinking LLMs and evaluate their performance across diverse TSF benchmarks. Our findings reveal that slow-thinking LLMs exhibit non-trivial zero-shot forecasting capabilities, especially in capturing high-level trends and contextual shifts. While preliminary, our study surfaces important insights into the reasoning behaviors of LLMs in temporal domains highlighting both their potential and limitations. We hope this work catalyzes further research into reasoning-based forecasting paradigms and paves the way toward more interpretable and generalizable TSF frameworks.
Abstract:Time series forecasting plays a vital role in various real-world applications and has attracted significant attention in recent decades. While recent methods have achieved remarkable accuracy by incorporating advanced inductive biases and training strategies, we observe that instance-level variations remain a significant challenge. These variations--stemming from distribution shifts, missing data, and long-tail patterns--often lead to suboptimal forecasts for specific instances, even when overall performance appears strong. To address this issue, we propose a model-agnostic framework, PIR, designed to enhance forecasting performance through Post-forecasting Identification and Revision. Specifically, PIR first identifies biased forecasting instances by estimating their accuracy. Based on this, the framework revises the forecasts using contextual information, including covariates and historical time series, from both local and global perspectives in a post-processing fashion. Extensive experiments on real-world datasets with mainstream forecasting models demonstrate that PIR effectively mitigates instance-level errors and significantly improves forecasting reliability.
Abstract:Intraoperative hypotension (IOH) frequently occurs under general anesthesia and is strongly linked to adverse outcomes such as myocardial injury and increased mortality. Despite its significance, IOH prediction is hindered by event sparsity and the challenge of integrating static and dynamic data across diverse patients. In this paper, we propose \textbf{IOHFuseLM}, a multimodal language model framework. To accurately identify and differentiate sparse hypotensive events, we leverage a two-stage training strategy. The first stage involves domain adaptive pretraining on IOH physiological time series augmented through diffusion methods, thereby enhancing the model sensitivity to patterns associated with hypotension. Subsequently, task fine-tuning is performed on the original clinical dataset to further enhance the ability to distinguish normotensive from hypotensive states. To enable multimodal fusion for each patient, we align structured clinical descriptions with the corresponding physiological time series at the token level. Such alignment enables the model to capture individualized temporal patterns alongside their corresponding clinical semantics. In addition, we convert static patient attributes into structured text to enrich personalized information. Experimental evaluations on two intraoperative datasets demonstrate that IOHFuseLM outperforms established baselines in accurately identifying IOH events, highlighting its applicability in clinical decision support scenarios. Our code is publicly available to promote reproducibility at https://github.com/zjt-gpu/IOHFuseLM.
Abstract:Arena-based evaluation is a fundamental yet significant evaluation paradigm for modern AI models, especially large language models (LLMs). Existing framework based on ELO rating system suffers from the inevitable instability problem due to ranking inconsistency and the lack of attention to the varying abilities of annotators. In this paper, we introduce a novel stable arena framework to address these issues by enhancing the ELO Rating System. Specifically, we replace the iterative update method with a Maximum Likelihood Estimation (MLE) approach, m-ELO, and provide theoretical proof of the consistency and stability of the MLE approach for model ranking. Additionally, we proposed the am-ELO, which modify the Elo Rating's probability function to incorporate annotator abilities, enabling the simultaneous estimation of model scores and annotator reliability. Experiments demonstrate that this method ensures stability, proving that this framework offers a more robust, accurate, and stable evaluation method for LLMs.
Abstract:Recommender systems (RS) have become crucial tools for information filtering in various real world scenarios. And cross domain recommendation (CDR) has been widely explored in recent years in order to provide better recommendation results in the target domain with the help of other domains. The CDR technology has developed rapidly, yet there is a lack of a comprehensive survey summarizing recent works. Therefore, in this paper, we will summarize the progress and prospects based on the main procedure of CDR, including Cross Domain Relevance, Cross Domain Interaction, Cross Domain Representation Enhancement and Model Optimization. To help researchers better understand and engage in this field, we also organize the applications and resources, and highlight several current important challenges and future directions of CDR. More details of the survey articles are available at https://github.com/USTCAGI/Awesome-Cross-Domain Recommendation-Papers-and-Resources.
Abstract:Pre-trained foundation models have recently significantly progressed in structured table understanding and reasoning. However, despite advancements in areas such as table semantic understanding and table question answering, recognizing the structure and content of unstructured tables using Vision Large Language Models (VLLMs) remains under-explored. In this work, we address this research gap by employing VLLMs in a training-free reasoning paradigm. First, we design a benchmark with various hierarchical dimensions relevant to table recognition. Subsequently, we conduct in-depth evaluations using pre-trained VLLMs, finding that low-quality image input is a significant bottleneck in the recognition process. Drawing inspiration from these findings, we propose the Neighbor-Guided Toolchain Reasoner (NGTR) framework, which is characterized by integrating multiple lightweight models for low-level visual processing operations aimed at mitigating issues with low-quality input images. Specifically, we utilize a neighbor retrieval mechanism to guide the generation of multiple tool invocation plans, transferring tool selection experiences from similar neighbors to the given input, thereby facilitating suitable tool selection. Additionally, we introduce a reflection module to supervise the tool invocation process. Extensive experiments on public table recognition datasets demonstrate that our approach significantly enhances the recognition capabilities of the vanilla VLLMs. We believe that the designed benchmark and the proposed NGTR framework could provide an alternative solution in table recognition.
Abstract:Text-to-image generative models excel in creating images from text but struggle with ensuring alignment and consistency between outputs and prompts. This paper introduces TextMatch, a novel framework that leverages multimodal optimization to address image-text discrepancies in text-to-image (T2I) generation and editing. TextMatch employs a scoring strategy powered by large language models (LLMs) and visual question-answering (VQA) models to evaluate semantic consistency between prompts and generated images. By integrating multimodal in-context learning and chain of thought reasoning, our method dynamically refines prompts through iterative optimization. This process ensures that the generated images better capture user intent of, resulting in higher fidelity and relevance. Extensive experiments demonstrate that TextMatch significantly improves text-image consistency across multiple benchmarks, establishing a reliable framework for advancing the capabilities of text-to-image generative models. Our code is available at https://anonymous.4open.science/r/TextMatch-F55C/.
Abstract:Sequential recommendation (SR) systems have evolved significantly over the past decade, transitioning from traditional collaborative filtering to deep learning approaches and, more recently, to large language models (LLMs). While the adoption of LLMs has driven substantial advancements, these models inherently lack collaborative filtering information, relying primarily on textual content data neglecting other modalities and thus failing to achieve optimal recommendation performance. To address this limitation, we propose Molar, a Multimodal large language sequential recommendation framework that integrates multiple content modalities with ID information to capture collaborative signals effectively. Molar employs an MLLM to generate unified item representations from both textual and non-textual data, facilitating comprehensive multimodal modeling and enriching item embeddings. Additionally, it incorporates collaborative filtering signals through a post-alignment mechanism, which aligns user representations from content-based and ID-based models, ensuring precise personalization and robust performance. By seamlessly combining multimodal content with collaborative filtering insights, Molar captures both user interests and contextual semantics, leading to superior recommendation accuracy. Extensive experiments validate that Molar significantly outperforms traditional and LLM-based baselines, highlighting its strength in utilizing multimodal data and collaborative signals for sequential recommendation tasks. The source code is available at https://anonymous.4open.science/r/Molar-8B06/.