University of South Australia
Abstract:Human video comprehension demonstrates dynamic coordination between reasoning and visual attention, adaptively focusing on query-relevant details. However, current long-form video question answering systems employ rigid pipelines that decouple reasoning from perception, leading to either information loss through premature visual abstraction or computational inefficiency through exhaustive processing. The core limitation lies in the inability to adapt visual extraction to specific reasoning requirements, different queries demand fundamentally different visual evidence from the same video content. In this work, we present CAVIA, a training-free framework that revolutionizes video understanding through reasoning, perception coordination. Unlike conventional approaches where visual processing operates independently of reasoning, CAVIA creates a closed-loop system where reasoning continuously guides visual extraction based on identified information gaps. CAVIA introduces three innovations: (1) hierarchical reasoning, guided localization to precise frames; (2) cross-modal semantic bridging for targeted extraction; (3) confidence-driven iterative synthesis. CAVIA achieves state-of-the-art performance on challenging benchmarks: EgoSchema (65.7%, +5.3%), NExT-QA (76.1%, +2.6%), and IntentQA (73.8%, +6.9%), demonstrating that dynamic reasoning-perception coordination provides a scalable paradigm for video understanding.
Abstract:Higher-order $U$-statistics abound in fields such as statistics, machine learning, and computer science, but are known to be highly time-consuming to compute in practice. Despite their widespread appearance, a comprehensive study of their computational complexity is surprisingly lacking. This paper aims to fill that gap by presenting several results related to the computational aspect of $U$-statistics. First, we derive a useful decomposition from an $m$-th order $U$-statistic to a linear combination of $V$-statistics with orders not exceeding $m$, which are generally more feasible to compute. Second, we explore the connection between exactly computing $V$-statistics and Einstein summation, a tool often used in computational mathematics, quantum computing, and quantum information sciences for accelerating tensor computations. Third, we provide an optimistic estimate of the time complexity for exactly computing $U$-statistics, based on the treewidth of a particular graph associated with the $U$-statistic kernel. The above ingredients lead to a new, much more runtime-efficient algorithm of exactly computing general higher-order $U$-statistics. We also wrap our new algorithm into an open-source Python package called $\texttt{u-stats}$. We demonstrate via three statistical applications that $\texttt{u-stats}$ achieves impressive runtime performance compared to existing benchmarks. This paper aspires to achieve two goals: (1) to capture the interest of researchers in both statistics and other related areas further to advance the algorithmic development of $U$-statistics, and (2) to offer the package $\texttt{u-stats}$ as a valuable tool for practitioners, making the implementation of methods based on higher-order $U$-statistics a more delightful experience.
Abstract:The Mixture of Experts (MoE) architecture is a cornerstone of modern state-of-the-art (SOTA) large language models (LLMs). MoE models facilitate scalability by enabling sparse parameter activation. However, traditional MoE architecture uses homogeneous experts of a uniform size, activating a fixed number of parameters irrespective of input complexity and thus limiting computational efficiency. To overcome this limitation, we introduce Grove MoE, a novel architecture incorporating experts of varying sizes, inspired by the heterogeneous big.LITTLE CPU architecture. This architecture features novel adjugate experts with a dynamic activation mechanism, enabling model capacity expansion while maintaining manageable computational overhead. Building on this architecture, we present GroveMoE-Base and GroveMoE-Inst, 33B-parameter LLMs developed by applying an upcycling strategy to the Qwen3-30B-A3B-Base model during mid-training and post-training. GroveMoE models dynamically activate 3.14-3.28B parameters based on token complexity and achieve performance comparable to SOTA open-source models of similar or even larger size.
Abstract:We propose a new paradigm for unsupervised anomaly detection and localization using Flow Matching (FM), which fundamentally addresses the model expressivity limitations of conventional flow-based methods. To this end, we formalize the concept of time-reversed Flow Matching (rFM) as a vector field regression along a predefined probability path to transform unknown data distributions into standard Gaussian. We bring two core observations that reshape our understanding of FM. First, we rigorously prove that FM with linear interpolation probability paths is inherently non-invertible. Second, our analysis reveals that employing reversed Gaussian probability paths in high-dimensional spaces can lead to trivial vector fields. This issue arises due to the manifold-related constraints. Building on the second observation, we propose Worst Transport (WT) displacement interpolation to reconstruct a non-probabilistic evolution path. The proposed WT-Flow enhances dynamical control over sample trajectories, constructing ''degenerate potential wells'' for anomaly-free samples while allowing anomalous samples to escape. This novel unsupervised paradigm offers a theoretically grounded separation mechanism for anomalous samples. Notably, FM provides a computationally tractable framework that scales to complex data. We present the first successful application of FM for the unsupervised anomaly detection task, achieving state-of-the-art performance at a single scale on the MVTec dataset. The reproducible code for training will be released upon camera-ready submission.
Abstract:Spectral information has long been recognized as a critical cue in remote sensing observations. Although numerous vision-language models have been developed for pixel-level interpretation, spectral information remains underutilized, resulting in suboptimal performance, particularly in multispectral scenarios. To address this limitation, we construct a vision-language instruction-following dataset named SPIE, which encodes spectral priors of land-cover objects into textual attributes recognizable by large language models (LLMs), based on classical spectral index computations. Leveraging this dataset, we propose SPEX, a multimodal LLM designed for instruction-driven land cover extraction. To this end, we introduce several carefully designed components and training strategies, including multiscale feature aggregation, token context condensation, and multispectral visual pre-training, to achieve precise and flexible pixel-level interpretation. To the best of our knowledge, SPEX is the first multimodal vision-language model dedicated to land cover extraction in spectral remote sensing imagery. Extensive experiments on five public multispectral datasets demonstrate that SPEX consistently outperforms existing state-of-the-art methods in extracting typical land cover categories such as vegetation, buildings, and water bodies. Moreover, SPEX is capable of generating textual explanations for its predictions, thereby enhancing interpretability and user-friendliness. Code will be released at: https://github.com/MiliLab/SPEX.
Abstract:The data privacy constraint in online continual learning (OCL), where the data can be seen only once, complicates the catastrophic forgetting problem in streaming data. A common approach applied by the current SOTAs in OCL is with the use of memory saving exemplars or features from previous classes to be replayed in the current task. On the other hand, the prompt-based approach performs excellently in continual learning but with the cost of a growing number of trainable parameters. The first approach may not be applicable in practice due to data openness policy, while the second approach has the issue of throughput associated with the streaming data. In this study, we propose a novel prompt-based method for online continual learning that includes 4 main components: (1) single light-weight prompt generator as a general knowledge, (2) trainable scaler-and-shifter as specific knowledge, (3) pre-trained model (PTM) generalization preserving, and (4) hard-soft updates mechanism. Our proposed method achieves significantly higher performance than the current SOTAs in CIFAR100, ImageNet-R, ImageNet-A, and CUB dataset. Our complexity analysis shows that our method requires a relatively smaller number of parameters and achieves moderate training time, inference time, and throughput. For further study, the source code of our method is available at https://github.com/anwarmaxsum/PROL.
Abstract:Recent years have witnessed remarkable advances in audio-driven talking head generation. However, existing approaches predominantly focus on single-character scenarios. While some methods can create separate conversation videos between two individuals, the critical challenge of generating unified conversation videos with multiple physically co-present characters sharing the same spatial environment remains largely unaddressed. This setting presents two key challenges: audio-to-character correspondence control and the lack of suitable datasets featuring multi-character talking videos within the same scene. To address these challenges, we introduce Bind-Your-Avatar, an MM-DiT-based model specifically designed for multi-talking-character video generation in the same scene. Specifically, we propose (1) A novel framework incorporating a fine-grained Embedding Router that binds `who' and `speak what' together to address the audio-to-character correspondence control. (2) Two methods for implementing a 3D-mask embedding router that enables frame-wise, fine-grained control of individual characters, with distinct loss functions based on observed geometric priors and a mask refinement strategy to enhance the accuracy and temporal smoothness of the predicted masks. (3) The first dataset, to the best of our knowledge, specifically constructed for multi-talking-character video generation, and accompanied by an open-source data processing pipeline, and (4) A benchmark for the dual-talking-characters video generation, with extensive experiments demonstrating superior performance over multiple state-of-the-art methods.
Abstract:Safety is a long-standing and the final pursuit in the development of autonomous driving systems, with a significant portion of safety challenge arising from perception. How to effectively evaluate the safety as well as the reliability of perception algorithms is becoming an emerging issue. Despite its critical importance, existing perception methods exhibit a limitation in their robustness, primarily due to the use of benchmarks are entierly simulated, which fail to align predicted results with actual outcomes, particularly under extreme weather conditions and sensor anomalies that are prevalent in real-world scenarios. To fill this gap, in this study, we propose a Sim-to-Real Evaluation Benchmark for Autonomous Driving (S2R-Bench). We collect diverse sensor anomaly data under various road conditions to evaluate the robustness of autonomous driving perception methods in a comprehensive and realistic manner. This is the first corruption robustness benchmark based on real-world scenarios, encompassing various road conditions, weather conditions, lighting intensities, and time periods. By comparing real-world data with simulated data, we demonstrate the reliability and practical significance of the collected data for real-world applications. We hope that this dataset will advance future research and contribute to the development of more robust perception models for autonomous driving. This dataset is released on https://github.com/adept-thu/S2R-Bench.
Abstract:Accurately predicting counterfactual user feedback is essential for building effective recommender systems. However, latent confounding bias can obscure the true causal relationship between user feedback and item exposure, ultimately degrading recommendation performance. Existing causal debiasing approaches often rely on strong assumptions-such as the availability of instrumental variables (IVs) or strong correlations between latent confounders and proxy variables-that are rarely satisfied in real-world scenarios. To address these limitations, we propose a novel generative framework called Latent Causality Constraints for Debiasing representation learning in Recommender Systems (LCDR). Specifically, LCDR leverages an identifiable Variational Autoencoder (iVAE) as a causal constraint to align the latent representations learned by a standard Variational Autoencoder (VAE) through a unified loss function. This alignment allows the model to leverage even weak or noisy proxy variables to recover latent confounders effectively. The resulting representations are then used to improve recommendation performance. Extensive experiments on three real-world datasets demonstrate that LCDR consistently outperforms existing methods in both mitigating bias and improving recommendation accuracy.
Abstract:The integration of Large Language Models (LLMs) and Federated Learning (FL) presents a promising solution for joint training on distributed data while preserving privacy and addressing data silo issues. However, this emerging field, known as Federated Large Language Models (FLLM), faces significant challenges, including communication and computation overheads, heterogeneity, privacy and security concerns. Current research has primarily focused on the feasibility of FLLM, but future trends are expected to emphasize enhancing system robustness and security. This paper provides a comprehensive review of the latest advancements in FLLM, examining challenges from four critical perspectives: feasibility, robustness, security, and future directions. We present an exhaustive survey of existing studies on FLLM feasibility, introduce methods to enhance robustness in the face of resource, data, and task heterogeneity, and analyze novel risks associated with this integration, including privacy threats and security challenges. We also review the latest developments in defense mechanisms and explore promising future research directions, such as few-shot learning, machine unlearning, and IP protection. This survey highlights the pressing need for further research to enhance system robustness and security while addressing the unique challenges posed by the integration of FL and LLM.