University of South Australia
Abstract:This paper presents LLaDA2.0 -- a tuple of discrete diffusion large language models (dLLM) scaling up to 100B total parameters through systematic conversion from auto-regressive (AR) models -- establishing a new paradigm for frontier-scale deployment. Instead of costly training from scratch, LLaDA2.0 upholds knowledge inheritance, progressive adaption and efficiency-aware design principle, and seamless converts a pre-trained AR model into dLLM with a novel 3-phase block-level WSD based training scheme: progressive increasing block-size in block diffusion (warm-up), large-scale full-sequence diffusion (stable) and reverting back to compact-size block diffusion (decay). Along with post-training alignment with SFT and DPO, we obtain LLaDA2.0-mini (16B) and LLaDA2.0-flash (100B), two instruction-tuned Mixture-of-Experts (MoE) variants optimized for practical deployment. By preserving the advantages of parallel decoding, these models deliver superior performance and efficiency at the frontier scale. Both models were open-sourced.
Abstract:Instruction-based image editing with diffusion models has achieved impressive results, yet existing methods struggle with fine-grained instructions specifying precise attributes such as colors, positions, and quantities. While recent approaches employ Group Relative Policy Optimization (GRPO) for alignment, they optimize only at individual sampling steps, providing sparse feedback that limits trajectory-level control. We propose a unified framework CogniEdit, combining multi-modal reasoning with dense reward optimization that propagates gradients across consecutive denoising steps, enabling trajectory-level gradient flow through the sampling process. Our method comprises three components: (1) Multi-modal Large Language Models for decomposing complex instructions into actionable directives, (2) Dynamic Token Focus Relocation that adaptively emphasizes fine-grained attributes, and (3) Dense GRPO-based optimization that propagates gradients across consecutive steps for trajectory-level supervision. Extensive experiments on benchmark datasets demonstrate that our CogniEdit achieves state-of-the-art performance in balancing fine-grained instruction following with visual quality and editability preservation
Abstract:Controllable generative models have been widely used to improve the realism of synthetic visual content. However, such models must handle control conditions and content generation computational requirements, resulting in generally low generation efficiency. To address this issue, we propose a Hybrid-Grained Cache (HGC) approach that reduces computational overhead by adopting cache strategies with different granularities at different computational stages. Specifically, (1) we use a coarse-grained cache (block-level) based on feature reuse to dynamically bypass redundant computations in encoder-decoder blocks between each step of model reasoning. (2) We design a fine-grained cache (prompt-level) that acts within a module, where the fine-grained cache reuses cross-attention maps within consecutive reasoning steps and extends them to the corresponding module computations of adjacent steps. These caches of different granularities can be seamlessly integrated into each computational link of the controllable generation process. We verify the effectiveness of HGC on four benchmark datasets, especially its advantages in balancing generation efficiency and visual quality. For example, on the COCO-Stuff segmentation benchmark, our HGC significantly reduces the computational cost (MACs) by 63% (from 18.22T to 6.70T), while keeping the loss of semantic fidelity (quantized performance degradation) within 1.5%.
Abstract:As a critical task in autonomous driving perception systems, 3D object detection is used to identify and track key objects, such as vehicles and pedestrians. However, detecting distant, small, or occluded objects (hard instances) remains a challenge, which directly compromises the safety of autonomous driving systems. We observe that existing multi-modal 3D object detection methods often follow a single-guided paradigm, failing to account for the differences in information density of hard instances between modalities. In this work, we propose DGFusion, based on the Dual-guided paradigm, which fully inherits the advantages of the Point-guide-Image paradigm and integrates the Image-guide-Point paradigm to address the limitations of the single paradigms. The core of DGFusion, the Difficulty-aware Instance Pair Matcher (DIPM), performs instance-level feature matching based on difficulty to generate easy and hard instance pairs, while the Dual-guided Modules exploit the advantages of both pair types to enable effective multi-modal feature fusion. Experimental results demonstrate that our DGFusion outperforms the baseline methods, with respective improvements of +1.0\% mAP, +0.8\% NDS, and +1.3\% average recall on nuScenes. Extensive experiments demonstrate consistent robustness gains for hard instance detection across ego-distance, size, visibility, and small-scale training scenarios.
Abstract:Planning is a critical component of end-to-end autonomous driving. However, prevailing imitation learning methods often suffer from mode collapse, failing to produce diverse trajectory hypotheses. Meanwhile, existing generative approaches struggle to incorporate crucial safety and physical constraints directly into the generative process, necessitating an additional optimization stage to refine their outputs. To address these limitations, we propose CATG, a novel planning framework that leverages Constrained Flow Matching. Concretely, CATG explicitly models the flow matching process, which inherently mitigates mode collapse and allows for flexible guidance from various conditioning signals. Our primary contribution is the novel imposition of explicit constraints directly within the flow matching process, ensuring that the generated trajectories adhere to vital safety and kinematic rules. Secondly, CATG parameterizes driving aggressiveness as a control signal during generation, enabling precise manipulation of trajectory style. Notably, on the NavSim v2 challenge, CATG achieved 2nd place with an EPDMS score of 51.31 and was honored with the Innovation Award.
Abstract:Although existing cross-domain continual learning approaches successfully address many streaming tasks having domain shifts, they call for a fully labeled source domain hindering their feasibility in the privacy constrained environments. This paper goes one step ahead with the problem of source-free cross-domain continual learning where the use of source-domain samples are completely prohibited. We propose the idea of rehearsal-free frequency-aware dynamic prompt collaborations (REFEREE) to cope with the absence of labeled source-domain samples in realm of cross-domain continual learning. REFEREE is built upon a synergy between a source-pre-trained model and a large-scale vision-language model, thus overcoming the problem of sub-optimal generalizations when relying only on a source pre-trained model. The domain shift problem between the source domain and the target domain is handled by a frequency-aware prompting technique encouraging low-frequency components while suppressing high-frequency components. This strategy generates frequency-aware augmented samples, robust against noisy pseudo labels. The noisy pseudo-label problem is further addressed with the uncertainty-aware weighting strategy where the mean and covariance matrix are weighted by prediction uncertainties, thus mitigating the adverse effects of the noisy pseudo label. Besides, the issue of catastrophic forgetting (CF) is overcome by kernel linear discriminant analysis (KLDA) where the backbone network is frozen while the classification is performed using the linear discriminant analysis approach guided by the random kernel method. Our rigorous numerical studies confirm the advantage of our approach where it beats prior arts having access to source domain samples with significant margins.




Abstract:The black-box domain adaptation (BBDA) topic is developed to address the privacy and security issues where only an application programming interface (API) of the source model is available for domain adaptations. Although the BBDA topic has attracted growing research attentions, existing works mostly target the vision applications and are not directly applicable to the time-series applications possessing unique spatio-temporal characteristics. In addition, none of existing approaches have explored the strength of foundation model for black box time-series domain adaptation (BBTSDA). This paper proposes a concept of Cross-Prompt Foundation Model (CPFM) for the BBTSDA problems. CPFM is constructed under a dual branch network structure where each branch is equipped with a unique prompt to capture different characteristics of data distributions. In the domain adaptation phase, the reconstruction learning phase in the prompt and input levels is developed. All of which are built upon a time-series foundation model to overcome the spatio-temporal dynamic. Our rigorous experiments substantiate the advantage of CPFM achieving improved results with noticeable margins from its competitors in three time-series datasets of different application domains.
Abstract:Causal representation learning (CRL) has garnered increasing interests from the causal inference and artificial intelligence community, due to its capability of disentangling potentially complex data-generating mechanism into causally interpretable latent features, by leveraging the heterogeneity of modern datasets. In this paper, we further contribute to the CRL literature, by focusing on the stylized linear structural causal model over the latent features and assuming a linear mixing function that maps latent features to the observed data or measurements. Existing linear CRL methods often rely on stringent assumptions, such as accessibility to single-node interventional data or restrictive distributional constraints on latent features and exogenous measurement noise. However, these prerequisites can be challenging to satisfy in certain scenarios. In this work, we propose a novel linear CRL algorithm that, unlike most existing linear CRL methods, operates under weaker assumptions about environment heterogeneity and data-generating distributions while still recovering latent causal features up to an equivalence class. We further validate our new algorithm via synthetic experiments and an interpretability analysis of large language models (LLMs), demonstrating both its superiority over competing methods in finite samples and its potential in integrating causality into AI.




Abstract:Current instruction-based image editing (IBIE) methods struggle with challenging editing tasks, as both editing types and sample counts of existing datasets are limited. Moreover, traditional dataset construction often contains noisy image-caption pairs, which may introduce biases and limit model capabilities in complex editing scenarios. To address these limitations, we introduce MultiEdit, a comprehensive dataset featuring over 107K high-quality image editing samples. It encompasses 6 challenging editing tasks through a diverse collection of 18 non-style-transfer editing types and 38 style transfer operations, covering a spectrum from sophisticated style transfer to complex semantic operations like person reference editing and in-image text editing. We employ a novel dataset construction pipeline that utilizes two multi-modal large language models (MLLMs) to generate visual-adaptive editing instructions and produce high-fidelity edited images, respectively. Extensive experiments demonstrate that fine-tuning foundational open-source models with our MultiEdit-Train set substantially improves models' performance on sophisticated editing tasks in our proposed MultiEdit-Test benchmark, while effectively preserving their capabilities on the standard editing benchmark. We believe MultiEdit provides a valuable resource for advancing research into more diverse and challenging IBIE capabilities. Our dataset is available at https://huggingface.co/datasets/inclusionAI/MultiEdit.
Abstract:Secure inference enables privacy-preserving machine learning by leveraging cryptographic protocols that support computations on sensitive user data without exposing it. However, integrating cryptographic protocols with large language models (LLMs) presents significant challenges, as the inherent complexity of these protocols, together with LLMs' massive parameter scale and sophisticated architectures, severely limits practical usability. In this work, we propose ENSI, a novel non-interactive secure inference framework for LLMs, based on the principle of co-designing the cryptographic protocols and LLM architecture. ENSI employs an optimized encoding strategy that seamlessly integrates CKKS scheme with a lightweight LLM variant, BitNet, significantly reducing the computational complexity of encrypted matrix multiplications. In response to the prohibitive computational demands of softmax under homomorphic encryption (HE), we pioneer the integration of the sigmoid attention mechanism with HE as a seamless, retraining-free alternative. Furthermore, by embedding the Bootstrapping operation within the RMSNorm process, we efficiently refresh ciphertexts while markedly decreasing the frequency of costly bootstrapping invocations. Experimental evaluations demonstrate that ENSI achieves approximately an 8x acceleration in matrix multiplications and a 2.6x speedup in softmax inference on CPU compared to state-of-the-art method, with the proportion of bootstrapping is reduced to just 1%.