Abstract:While open sourced Vision-Language Models (VLMs) have proliferated, selecting the optimal pretrained model for a specific downstream task remains challenging. Exhaustive evaluation is often infeasible due to computational constraints and data limitations in few shot scenarios. Existing selection methods fail to fully address this: they either rely on data-intensive proxies or use symmetric textual descriptors that neglect the inherently directional and model-specific nature of transferability. To address this problem, we propose a framework that grounds model selection in the internal functional dynamics of the visual encoder. Our approach represents each task via layer wise conductance and derives a target-conditioned block importance distribution through entropy regularized alignment. Building on this, we introduce Directional Conductance Divergence (DCD), an asymmetric metric that quantifies how effectively a source task covers the target's salient functional blocks. This allows for predicting target model rankings by aggregating source task ranks without direct inference. Experimental results on 48 VLMs across 21 datasets demonstrate that our method outperforms state-of-the-art baselines, achieving a 14.7% improvement in NDCG@5 over SWAB.
Abstract:The reinforcement fine-tuning area is undergoing an explosion papers largely on optimizing design choices. Though performance gains are often claimed, inconsistent conclusions also arise from time to time, making the progress illusive. Reflecting on this illusion, we still lack principled answers to two fundamental questions: 1) what is the role of each design choice? 2) which ones are critical? This paper aims to shed light on them. The underlying challenge is that design choices are entangled together, making their contribution to learning and generalization difficult to attribute. To address this challenge, we first construct a minimalist baseline for disentangling factors: one rollout per query in each round, the outcome reward serving as the training signal without any advantage trick, and a batch size of thirty-two. This baseline connects to batched contextual bandit learning, which facilitates experimental analysis. Centering around this baseline, we design an experiment pipeline, examining the marginal gains of factors like advantage, number of rollouts, etc. Experiments on three base models and two datasets, not only reveal new understanding on the role of various design choices on learning and generalization dynamics, but also identify critical ones that deserve more effort.
Abstract:The Softmax loss is one of the most widely employed surrogate objectives for classification and ranking tasks. To elucidate its theoretical properties, the Fenchel-Young framework situates it as a canonical instance within a broad family of surrogates. Concurrently, another line of research has addressed scalability when the number of classes is exceedingly large, in which numerous approximations have been proposed to retain the benefits of the exact objective while improving efficiency. Building on these two perspectives, we present a principled investigation of the Softmax-family losses. We examine whether different surrogates achieve consistency with classification and ranking metrics, and analyze their gradient dynamics to reveal distinct convergence behaviors. We also introduce a systematic bias-variance decomposition for approximate methods that provides convergence guarantees, and further derive a per-epoch complexity analysis, showing explicit trade-offs between effectiveness and efficiency. Extensive experiments on a representative task demonstrate a strong alignment between consistency, convergence, and empirical performance. Together, these results establish a principled foundation and offer practical guidance for loss selections in large-class machine learning applications.
Abstract:Chain-of-thought (CoT) reasoning has become the standard paradigm for enabling Large Language Models (LLMs) to solve complex problems. However, recent studies reveal a sharp performance drop in reasoning hop generalization scenarios, where the required number of reasoning steps exceeds training distributions while the underlying algorithm remains unchanged. The internal mechanisms driving this failure remain poorly understood. In this work, we conduct a systematic study on tasks from multiple domains, and find that errors concentrate at token positions of a few critical error types, rather than being uniformly distributed. Closer inspection reveals that these token-level erroneous predictions stem from internal competition mechanisms: certain attention heads, termed erroneous processing heads (ep heads), tip the balance by amplifying incorrect reasoning trajectories while suppressing correct ones. Notably, removing individual ep heads during inference can often restore the correct predictions. Motivated by these insights, we propose test-time correction of reasoning, a lightweight intervention method that dynamically identifies and deactivates ep heads in the reasoning process. Extensive experiments across different tasks and LLMs show that it consistently improves reasoning hop generalization, highlighting both its effectiveness and potential.
Abstract:Motivated by the remarkable progress of large language models (LLMs) in objective tasks like mathematics and coding, there is growing interest in their potential to simulate human behavior--a capability with profound implications for transforming social science research and customer-centric business insights. However, LLMs often lack a nuanced understanding of human cognition and behavior, limiting their effectiveness in social simulation and personalized applications. We posit that this limitation stems from a fundamental misalignment: standard LLM pretraining on vast, uncontextualized web data does not capture the continuous, situated context of an individual's decisions, thoughts, and behaviors over time. To bridge this gap, we introduce HumanLLM, a foundation model designed for personalized understanding and simulation of individuals. We first construct the Cognitive Genome Dataset, a large-scale corpus curated from real-world user data on platforms like Reddit, Twitter, Blogger, and Amazon. Through a rigorous, multi-stage pipeline involving data filtering, synthesis, and quality control, we automatically extract over 5.5 million user logs to distill rich profiles, behaviors, and thinking patterns. We then formulate diverse learning tasks and perform supervised fine-tuning to empower the model to predict a wide range of individualized human behaviors, thoughts, and experiences. Comprehensive evaluations demonstrate that HumanLLM achieves superior performance in predicting user actions and inner thoughts, more accurately mimics user writing styles and preferences, and generates more authentic user profiles compared to base models. Furthermore, HumanLLM shows significant gains on out-of-domain social intelligence benchmarks, indicating enhanced generalization.
Abstract:A large number of heuristics have been proposed to optimize the reinforcement fine-tuning of LLMs. However, inconsistent claims are made from time to time, making this area elusive. Reflecting on this situation, two fundamental questions still lack a clear understanding: 1) what is the role of each optimizing choice? 2) which ones are the bottlenecks? This paper aims to shed light on them, and it faces the challenge of several entangled confounding factors in the fine-tuning process. To tackle this challenge, we propose a bottom-up experiment pipeline. The bottom layer is composed of a minimalist configuration: one training data, one rollout per round and the reward directly serve as the learning signal without advantage function design. This minimalist configuration connects to multi-armed bandit learning with extremely large discrete action space, which offers theories to corroborate the experiment findings. The up procedure of the experiment pipeline expanding the minimalist configuration layer by layer, examining the role of each design choice. Experimental results on three LLMs and two reasoning datasets not only reveal new understanding of the design choice but also yield essential insights to shape the area.
Abstract:While the OneRec series has successfully unified the fragmented recommendation pipeline into an end-to-end generative framework, a significant gap remains between recommendation systems and general intelligence. Constrained by isolated data, they operate as domain specialists-proficient in pattern matching but lacking world knowledge, reasoning capabilities, and instruction following. This limitation is further compounded by the lack of a holistic benchmark to evaluate such integrated capabilities. To address this, our contributions are: 1) RecIF Bench & Open Data: We propose RecIF-Bench, a holistic benchmark covering 8 diverse tasks that thoroughly evaluate capabilities from fundamental prediction to complex reasoning. Concurrently, we release a massive training dataset comprising 96 million interactions from 160,000 users to facilitate reproducible research. 2) Framework & Scaling: To ensure full reproducibility, we open-source our comprehensive training pipeline, encompassing data processing, co-pretraining, and post-training. Leveraging this framework, we demonstrate that recommendation capabilities can scale predictably while mitigating catastrophic forgetting of general knowledge. 3) OneRec-Foundation: We release OneRec Foundation (1.7B and 8B), a family of models establishing new state-of-the-art (SOTA) results across all tasks in RecIF-Bench. Furthermore, when transferred to the Amazon benchmark, our models surpass the strongest baselines with an average 26.8% improvement in Recall@10 across 10 diverse datasets (Figure 1). This work marks a step towards building truly intelligent recommender systems. Nonetheless, realizing this vision presents significant technical and theoretical challenges, highlighting the need for broader research engagement in this promising direction.




Abstract:Click-Through Rate (CTR) prediction, a core task in recommendation systems, aims to estimate the probability of users clicking on items. Existing models predominantly follow a discriminative paradigm, which relies heavily on explicit interactions between raw ID embeddings. However, this paradigm inherently renders them susceptible to two critical issues: embedding dimensional collapse and information redundancy, stemming from the over-reliance on feature interactions \emph{over raw ID embeddings}. To address these limitations, we propose a novel \emph{Supervised Feature Generation (SFG)} framework, \emph{shifting the paradigm from discriminative ``feature interaction" to generative ``feature generation"}. Specifically, SFG comprises two key components: an \emph{Encoder} that constructs hidden embeddings for each feature, and a \emph{Decoder} tasked with regenerating the feature embeddings of all features from these hidden representations. Unlike existing generative approaches that adopt self-supervised losses, we introduce a supervised loss to utilize the supervised signal, \ie, click or not, in the CTR prediction task. This framework exhibits strong generalizability: it can be seamlessly integrated with most existing CTR models, reformulating them under the generative paradigm. Extensive experiments demonstrate that SFG consistently mitigates embedding collapse and reduces information redundancy, while yielding substantial performance gains across various datasets and base models. The code is available at https://github.com/USTC-StarTeam/GE4Rec.
Abstract:This paper revisits the LLM cache bandit problem, with a special focus on addressing the query heterogeneity for cost-effective LLM inference. Previous works often assume uniform query sizes. Heterogeneous query sizes introduce a combinatorial structure for cache selection, making the cache replacement process more computationally and statistically challenging. We treat optimal cache selection as a knapsack problem and employ an accumulation-based strategy to effectively balance computational overhead and cache updates. In theoretical analysis, we prove that the regret of our algorithm achieves an $O(\sqrt{MNT})$ bound, improving the coefficient of $\sqrt{MN}$ compared to the $O(MN\sqrt{T})$ result in Berkeley, where $N$ is the total number of queries and $M$ is the cache size. Additionally, we also provide a problem-dependent bound, which was absent in previous works. The experiment rely on real-world data show that our algorithm reduces the total cost by approximately 12\%.
Abstract:In this work, we introduce OmniGen2, a versatile and open-source generative model designed to provide a unified solution for diverse generation tasks, including text-to-image, image editing, and in-context generation. Unlike OmniGen v1, OmniGen2 features two distinct decoding pathways for text and image modalities, utilizing unshared parameters and a decoupled image tokenizer. This design enables OmniGen2 to build upon existing multimodal understanding models without the need to re-adapt VAE inputs, thereby preserving the original text generation capabilities. To facilitate the training of OmniGen2, we developed comprehensive data construction pipelines, encompassing image editing and in-context generation data. Additionally, we introduce a reflection mechanism tailored for image generation tasks and curate a dedicated reflection dataset based on OmniGen2. Despite its relatively modest parameter size, OmniGen2 achieves competitive results on multiple task benchmarks, including text-to-image and image editing. To further evaluate in-context generation, also referred to as subject-driven tasks, we introduce a new benchmark named OmniContext. OmniGen2 achieves state-of-the-art performance among open-source models in terms of consistency. We will release our models, training code, datasets, and data construction pipeline to support future research in this field. Project Page: https://vectorspacelab.github.io/OmniGen2; GitHub Link: https://github.com/VectorSpaceLab/OmniGen2