Alert button
Picture for Ruiming Tang

Ruiming Tang

Alert button

Towards Automated Negative Sampling in Implicit Recommendation

Nov 06, 2023
Fuyuan Lyu, Yaochen Hu, Xing Tang, Yingxue Zhang, Ruiming Tang, Xue Liu

Negative sampling methods are vital in implicit recommendation models as they allow us to obtain negative instances from massive unlabeled data. Most existing approaches focus on sampling hard negative samples in various ways. These studies are orthogonal to the recommendation model and implicit datasets. However, such an idea contradicts the common belief in AutoML that the model and dataset should be matched. Empirical experiments suggest that the best-performing negative sampler depends on the implicit dataset and the specific recommendation model. Hence, we propose a hypothesis that the negative sampler should align with the capacity of the recommendation models as well as the statistics of the datasets to achieve optimal performance. A mismatch between these three would result in sub-optimal outcomes. An intuitive idea to address the mismatch problem is to exhaustively select the best-performing negative sampler given the model and dataset. However, such an approach is computationally expensive and time-consuming, leaving the problem unsolved. In this work, we propose the AutoSample framework that adaptively selects the best-performing negative sampler among candidates. Specifically, we propose a loss-to-instance approximation to transform the negative sampler search task into the learning task over a weighted sum, enabling end-to-end training of the model. We also designed an adaptive search algorithm to extensively and efficiently explore the search space. A specific initialization approach is also obtained to better utilize the obtained model parameters during the search stage, which is similar to curriculum learning and leads to better performance and less computation resource consumption. We evaluate the proposed framework on four benchmarks over three models. Extensive experiments demonstrate the effectiveness and efficiency of our proposed framework.

Viaarxiv icon

APGL4SR: A Generic Framework with Adaptive and Personalized Global Collaborative Information in Sequential Recommendation

Nov 06, 2023
Mingjia Yin, Hao Wang, Xiang Xu, Likang Wu, Sirui Zhao, Wei Guo, Yong Liu, Ruiming Tang, Defu Lian, Enhong Chen

The sequential recommendation system has been widely studied for its promising effectiveness in capturing dynamic preferences buried in users' sequential behaviors. Despite the considerable achievements, existing methods usually focus on intra-sequence modeling while overlooking exploiting global collaborative information by inter-sequence modeling, resulting in inferior recommendation performance. Therefore, previous works attempt to tackle this problem with a global collaborative item graph constructed by pre-defined rules. However, these methods neglect two crucial properties when capturing global collaborative information, i.e., adaptiveness and personalization, yielding sub-optimal user representations. To this end, we propose a graph-driven framework, named Adaptive and Personalized Graph Learning for Sequential Recommendation (APGL4SR), that incorporates adaptive and personalized global collaborative information into sequential recommendation systems. Specifically, we first learn an adaptive global graph among all items and capture global collaborative information with it in a self-supervised fashion, whose computational burden can be further alleviated by the proposed SVD-based accelerator. Furthermore, based on the graph, we propose to extract and utilize personalized item correlations in the form of relative positional encoding, which is a highly compatible manner of personalizing the utilization of global collaborative information. Finally, the entire framework is optimized in a multi-task learning paradigm, thus each part of APGL4SR can be mutually reinforced. As a generic framework, APGL4SR can outperform other baselines with significant margins. The code is available at https://github.com/Graph-Team/APGL4SR.

Viaarxiv icon

ALT: Towards Fine-grained Alignment between Language and CTR Models for Click-Through Rate Prediction

Oct 30, 2023
Hangyu Wang, Jianghao Lin, Xiangyang Li, Bo Chen, Chenxu Zhu, Ruiming Tang, Weinan Zhang, Yong Yu

Figure 1 for ALT: Towards Fine-grained Alignment between Language and CTR Models for Click-Through Rate Prediction
Figure 2 for ALT: Towards Fine-grained Alignment between Language and CTR Models for Click-Through Rate Prediction
Figure 3 for ALT: Towards Fine-grained Alignment between Language and CTR Models for Click-Through Rate Prediction
Figure 4 for ALT: Towards Fine-grained Alignment between Language and CTR Models for Click-Through Rate Prediction

Click-through rate (CTR) prediction plays as a core function module in various personalized online services. According to the data modality and input format, the models for CTR prediction can be mainly classified into two categories. The first one is the traditional CTR models that take as inputs the one-hot encoded ID features of tabular modality, which aims to capture the collaborative signals via feature interaction modeling. The second category takes as inputs the sentences of textual modality obtained by hard prompt templates, where pretrained language models (PLMs) are adopted to extract the semantic knowledge. These two lines of research generally focus on different characteristics of the same input data (i.e., textual and tabular modalities), forming a distinct complementary relationship with each other. Therefore, in this paper, we propose to conduct fine-grained feature-level Alignment between Language and CTR models (ALT) for CTR prediction. Apart from the common CLIP-like instance-level contrastive learning, we further design a novel joint reconstruction pretraining task for both masked language and tabular modeling. Specifically, the masked data of one modality (i.e., tokens or features) has to be recovered with the help of the other modality, which establishes the feature-level interaction and alignment via sufficient mutual information extraction between dual modalities. Moreover, we propose three different finetuning strategies with the option to train the aligned language and CTR models separately or jointly for downstream CTR prediction tasks, thus accommodating the varying efficacy and efficiency requirements for industrial applications. Extensive experiments on three real-world datasets demonstrate that ALT outperforms SOTA baselines, and is highly compatible for various language and CTR models.

* Under Review 
Viaarxiv icon

Optimal Transport for Treatment Effect Estimation

Oct 27, 2023
Hao Wang, Zhichao Chen, Jiajun Fan, Haoxuan Li, Tianqiao Liu, Weiming Liu, Quanyu Dai, Yichao Wang, Zhenhua Dong, Ruiming Tang

Figure 1 for Optimal Transport for Treatment Effect Estimation
Figure 2 for Optimal Transport for Treatment Effect Estimation
Figure 3 for Optimal Transport for Treatment Effect Estimation
Figure 4 for Optimal Transport for Treatment Effect Estimation

Estimating conditional average treatment effect from observational data is highly challenging due to the existence of treatment selection bias. Prevalent methods mitigate this issue by aligning distributions of different treatment groups in the latent space. However, there are two critical problems that these methods fail to address: (1) mini-batch sampling effects (MSE), which causes misalignment in non-ideal mini-batches with outcome imbalance and outliers; (2) unobserved confounder effects (UCE), which results in inaccurate discrepancy calculation due to the neglect of unobserved confounders. To tackle these problems, we propose a principled approach named Entire Space CounterFactual Regression (ESCFR), which is a new take on optimal transport in the context of causality. Specifically, based on the framework of stochastic optimal transport, we propose a relaxed mass-preserving regularizer to address the MSE issue and design a proximal factual outcome regularizer to handle the UCE issue. Extensive experiments demonstrate that our proposed ESCFR can successfully tackle the treatment selection bias and achieve significantly better performance than state-of-the-art methods.

* Accepted as NeurIPS 2023 Poster 
Viaarxiv icon

ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction

Oct 17, 2023
Jianghao Lin, Bo Chen, Hangyu Wang, Yunjia Xi, Yanru Qu, Xinyi Dai, Kangning Zhang, Ruiming Tang, Yong Yu, Weinan Zhang

Figure 1 for ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction
Figure 2 for ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction
Figure 3 for ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction
Figure 4 for ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction

Click-through rate (CTR) prediction has become increasingly indispensable for various Internet applications. Traditional CTR models convert the multi-field categorical data into ID features via one-hot encoding, and extract the collaborative signals among features. Such a paradigm suffers from the problem of semantic information loss. Another line of research explores the potential of pretrained language models (PLMs) for CTR prediction by converting input data into textual sentences through hard prompt templates. Although semantic signals are preserved, they generally fail to capture the collaborative information (e.g., feature interactions, pure ID features), not to mention the unacceptable inference overhead brought by the huge model size. In this paper, we aim to model both the semantic knowledge and collaborative knowledge for accurate CTR estimation, and meanwhile address the inference inefficiency issue. To benefit from both worlds and close their gaps, we propose a novel model-agnostic framework (i.e., ClickPrompt), where we incorporate CTR models to generate interaction-aware soft prompts for PLMs. We design a prompt-augmented masked language modeling (PA-MLM) pretraining task, where PLM has to recover the masked tokens based on the language context, as well as the soft prompts generated by CTR model. The collaborative and semantic knowledge from ID and textual features would be explicitly aligned and interacted via the prompt interface. Then, we can either tune the CTR model with PLM for superior performance, or solely tune the CTR model without PLM for inference efficiency. Experiments on four real-world datasets validate the effectiveness of ClickPrompt compared with existing baselines.

* under review 
Viaarxiv icon

GMOCAT: A Graph-Enhanced Multi-Objective Method for Computerized Adaptive Testing

Oct 11, 2023
Hangyu Wang, Ting Long, Liang Yin, Weinan Zhang, Wei Xia, Qichen Hong, Dingyin Xia, Ruiming Tang, Yong Yu

Figure 1 for GMOCAT: A Graph-Enhanced Multi-Objective Method for Computerized Adaptive Testing
Figure 2 for GMOCAT: A Graph-Enhanced Multi-Objective Method for Computerized Adaptive Testing
Figure 3 for GMOCAT: A Graph-Enhanced Multi-Objective Method for Computerized Adaptive Testing
Figure 4 for GMOCAT: A Graph-Enhanced Multi-Objective Method for Computerized Adaptive Testing

Computerized Adaptive Testing(CAT) refers to an online system that adaptively selects the best-suited question for students with various abilities based on their historical response records. Most CAT methods only focus on the quality objective of predicting the student ability accurately, but neglect concept diversity or question exposure control, which are important considerations in ensuring the performance and validity of CAT. Besides, the students' response records contain valuable relational information between questions and knowledge concepts. The previous methods ignore this relational information, resulting in the selection of sub-optimal test questions. To address these challenges, we propose a Graph-Enhanced Multi-Objective method for CAT (GMOCAT). Firstly, three objectives, namely quality, diversity and novelty, are introduced into the Scalarized Multi-Objective Reinforcement Learning framework of CAT, which respectively correspond to improving the prediction accuracy, increasing the concept diversity and reducing the question exposure. We use an Actor-Critic Recommender to select questions and optimize three objectives simultaneously by the scalarization function. Secondly, we utilize the graph neural network to learn relation-aware embeddings of questions and concepts. These embeddings are able to aggregate neighborhood information in the relation graphs between questions and concepts. We conduct experiments on three real-world educational datasets, and show that GMOCAT not only outperforms the state-of-the-art methods in the ability prediction, but also achieve superior performance in improving the concept diversity and alleviating the question exposure. Our code is available at https://github.com/justarter/GMOCAT.

* KDD23 
Viaarxiv icon

Ten Challenges in Industrial Recommender Systems

Oct 07, 2023
Zhenhua Dong, Jieming Zhu, Weiwen Liu, Ruiming Tang

Huawei's vision and mission is to build a fully connected intelligent world. Since 2013, Huawei Noah's Ark Lab has helped many products build recommender systems and search engines for getting the right information to the right users. Every day, our recommender systems serve hundreds of millions of mobile phone users and recommend different kinds of content and services such as apps, news feeds, songs, videos, books, themes, and instant services. The big data and various scenarios provide us with great opportunities to develop advanced recommendation technologies. Furthermore, we have witnessed the technical trend of recommendation models in the past ten years, from the shallow and simple models like collaborative filtering, linear models, low rank models to deep and complex models like neural networks, pre-trained language models. Based on the mission, opportunities and technological trends, we have also met several hard problems in our recommender systems. In this talk, we will share ten important and interesting challenges and hope that the RecSys community can get inspired and create better recommender systems.

Viaarxiv icon

Diffusion Augmentation for Sequential Recommendation

Sep 22, 2023
Qidong Liu, Fan Yan, Xiangyu Zhao, Zhaocheng Du, Huifeng Guo, Ruiming Tang, Feng Tian

Figure 1 for Diffusion Augmentation for Sequential Recommendation
Figure 2 for Diffusion Augmentation for Sequential Recommendation
Figure 3 for Diffusion Augmentation for Sequential Recommendation
Figure 4 for Diffusion Augmentation for Sequential Recommendation

Sequential recommendation (SRS) has become the technical foundation in many applications recently, which aims to recommend the next item based on the user's historical interactions. However, sequential recommendation often faces the problem of data sparsity, which widely exists in recommender systems. Besides, most users only interact with a few items, but existing SRS models often underperform these users. Such a problem, named the long-tail user problem, is still to be resolved. Data augmentation is a distinct way to alleviate these two problems, but they often need fabricated training strategies or are hindered by poor-quality generated interactions. To address these problems, we propose a Diffusion Augmentation for Sequential Recommendation (DiffuASR) for a higher quality generation. The augmented dataset by DiffuASR can be used to train the sequential recommendation models directly, free from complex training procedures. To make the best of the generation ability of the diffusion model, we first propose a diffusion-based pseudo sequence generation framework to fill the gap between image and sequence generation. Then, a sequential U-Net is designed to adapt the diffusion noise prediction model U-Net to the discrete sequence generation task. At last, we develop two guide strategies to assimilate the preference between generated and origin sequences. To validate the proposed DiffuASR, we conduct extensive experiments on three real-world datasets with three sequential recommendation models. The experimental results illustrate the effectiveness of DiffuASR. As far as we know, DiffuASR is one pioneer that introduce the diffusion model to the recommendation.

Viaarxiv icon

HAMUR: Hyper Adapter for Multi-Domain Recommendation

Sep 12, 2023
Xiaopeng Li, Fan Yan, Xiangyu Zhao, Yichao Wang, Bo Chen, Huifeng Guo, Ruiming Tang

Figure 1 for HAMUR: Hyper Adapter for Multi-Domain Recommendation
Figure 2 for HAMUR: Hyper Adapter for Multi-Domain Recommendation
Figure 3 for HAMUR: Hyper Adapter for Multi-Domain Recommendation
Figure 4 for HAMUR: Hyper Adapter for Multi-Domain Recommendation

Multi-Domain Recommendation (MDR) has gained significant attention in recent years, which leverages data from multiple domains to enhance their performance concurrently.However, current MDR models are confronted with two limitations. Firstly, the majority of these models adopt an approach that explicitly shares parameters between domains, leading to mutual interference among them. Secondly, due to the distribution differences among domains, the utilization of static parameters in existing methods limits their flexibility to adapt to diverse domains. To address these challenges, we propose a novel model Hyper Adapter for Multi-Domain Recommendation (HAMUR). Specifically, HAMUR consists of two components: (1). Domain-specific adapter, designed as a pluggable module that can be seamlessly integrated into various existing multi-domain backbone models, and (2). Domain-shared hyper-network, which implicitly captures shared information among domains and dynamically generates the parameters for the adapter. We conduct extensive experiments on two public datasets using various backbone networks. The experimental results validate the effectiveness and scalability of the proposed model.

* Accepted by CIKM'2023 
Viaarxiv icon