Abstract:Large Language Models (LLMs) are increasingly used for question answering over scientific research papers. Existing retrieval augmentation methods often rely on isolated text chunks or concepts, but overlook deeper semantic connections between papers. This impairs the LLM's comprehension of scientific literature, hindering the comprehensiveness and specificity of its responses. To address this, we propose Central Entity-Guided Graph Optimization for Community Detection (CE-GOCD), a method that augments LLMs' scientific question answering by explicitly modeling and leveraging semantic substructures within academic knowledge graphs. Our approach operates by: (1) leveraging paper titles as central entities for targeted subgraph retrieval, (2) enhancing implicit semantic discovery via subgraph pruning and completion, and (3) applying community detection to distill coherent paper groups with shared themes. We evaluated the proposed method on three NLP literature-based question-answering datasets, and the results demonstrate its superiority over other retrieval-augmented baseline approaches, confirming the effectiveness of our framework.
Abstract:Long Chain-of-Thought (LCoT), achieved by Reinforcement Learning with Verifiable Rewards (RLVR), has proven effective in enhancing the reasoning capabilities of Large Language Models (LLMs). However, reasoning in current LLMs is primarily generated as plain text, where performing semantic evaluation on such unstructured data creates a computational bottleneck during training. Despite RLVR-based optimization, existing methods still suffer from coarse-grained supervision, reward hacking, high training costs, and poor generalization. To address these issues, we propose the Graph Reasoning Paradigm (GRP), which realizes structured and symbolic reasoning, implemented via graph-structured representations with step-level cognitive labels. Building upon GRP, we further design Process-Aware Stratified Clipping Group Relative Policy Optimization (PASC-GRPO), which leverages structured evaluation to replace semantic evaluation, achieves process-aware verification through graph-structured outcome rewards, and mitigates reward hacking via stratified clipping advantage estimation. Experiments demonstrate significant improvements across mathematical reasoning and code generation tasks. Data, models, and code will be released later.
Abstract:Multi-behavior sequential recommendation aims to capture users' dynamic interests by modeling diverse types of user interactions over time. Although several studies have explored this setting, the recommendation performance remains suboptimal, mainly due to two fundamental challenges: the heterogeneity of user behaviors and data sparsity. To address these challenges, we propose BLADE, a framework that enhances multi-behavior modeling while mitigating data sparsity. Specifically, to handle behavior heterogeneity, we introduce a dual item-behavior fusion architecture that incorporates behavior information at both the input and intermediate levels, enabling preference modeling from multiple perspectives. To mitigate data sparsity, we design three behavior-level data augmentation methods that operate directly on behavior sequences rather than core item sequences. These methods generate diverse augmented views while preserving the semantic consistency of item sequences. These augmented views further enhance representation learning and generalization via contrastive learning. Experiments on three real-world datasets demonstrate the effectiveness of our approach.
Abstract:The mismatch between the growing demand for psychological counseling and the limited availability of services has motivated research into the application of Large Language Models (LLMs) in this domain. Consequently, there is a need for a robust and unified benchmark to assess the counseling competence of various LLMs. Existing works, however, are limited by unprofessional client simulation, static question-and-answer evaluation formats, and unidimensional metrics. These limitations hinder their effectiveness in assessing a model's comprehensive ability to handle diverse and complex clients. To address this gap, we introduce \textbf{CARE-Bench}, a dynamic and interactive automated benchmark. It is built upon diverse client profiles derived from real-world counseling cases and simulated according to expert guidelines. CARE-Bench provides a multidimensional performance evaluation grounded in established psychological scales. Using CARE-Bench, we evaluate several general-purpose LLMs and specialized counseling models, revealing their current limitations. In collaboration with psychologists, we conduct a detailed analysis of the reasons for LLMs' failures when interacting with clients of different types, which provides directions for developing more comprehensive, universal, and effective counseling models.
Abstract:Large language models (LLMs) have demonstrated remarkable performance on various medical benchmarks, but their capabilities across different cognitive levels remain underexplored. Inspired by Bloom's Taxonomy, we propose a multi-cognitive-level evaluation framework for assessing LLMs in the medical domain in this study. The framework integrates existing medical datasets and introduces tasks targeting three cognitive levels: preliminary knowledge grasp, comprehensive knowledge application, and scenario-based problem solving. Using this framework, we systematically evaluate state-of-the-art general and medical LLMs from six prominent families: Llama, Qwen, Gemma, Phi, GPT, and DeepSeek. Our findings reveal a significant performance decline as cognitive complexity increases across evaluated models, with model size playing a more critical role in performance at higher cognitive levels. Our study highlights the need to enhance LLMs' medical capabilities at higher cognitive levels and provides insights for developing LLMs suited to real-world medical applications.
Abstract:Although large language models (LLMs) show promise in solving complex mathematical tasks, existing evaluation paradigms rely solely on a coarse measure of overall answer accuracy, which are insufficient for assessing their authentic capabilities. In this paper, we propose \textbf{CogMath}, which comprehensively assesses LLMs' mathematical abilities through the lens of human cognition. Specifically, inspired by psychological theories, CogMath formalizes human reasoning process into 3 stages: \emph{problem comprehension}, \emph{problem solving}, and \emph{solution summarization}. Within these stages, we investigate perspectives such as numerical calculation, knowledge, and counterfactuals, and design a total of 9 fine-grained evaluation dimensions. In each dimension, we develop an ``\emph{Inquiry}-\emph{Judge}-\emph{Reference}'' multi-agent system to generate inquiries that assess LLMs' mastery from this dimension. An LLM is considered to truly master a problem only when excelling in all inquiries from the 9 dimensions. By applying CogMath on three benchmarks, we reveal that the mathematical capabilities of 7 mainstream LLMs are overestimated by 30\%-40\%. Moreover, we locate their strengths and weaknesses across specific stages/dimensions, offering in-depth insights to further enhance their reasoning abilities.
Abstract:The advent of large reasoning models, such as OpenAI o1 and DeepSeek R1, has significantly advanced complex reasoning tasks. However, their capabilities in multilingual complex reasoning remain underexplored, with existing efforts largely focused on simpler tasks like MGSM. To address this gap, we introduce MMATH, a benchmark for multilingual complex reasoning spanning 374 high-quality math problems across 10 typologically diverse languages. Using MMATH, we observe that even advanced models like DeepSeek R1 exhibit substantial performance disparities across languages and suffer from a critical off-target issue-generating responses in unintended languages. To address this, we explore strategies including prompting and training, demonstrating that reasoning in English and answering in target languages can simultaneously enhance performance and preserve target-language consistency. Our findings offer new insights and practical strategies for advancing the multilingual reasoning capabilities of large language models. Our code and data could be found at https://github.com/RUCAIBox/MMATH.
Abstract:Pre-trained language models represented by the Transformer have been proven to possess strong base capabilities, and the representative self-attention mechanism in the Transformer has become a classic in sequence modeling architectures. Different from the work of proposing sequence modeling architecture to improve the efficiency of attention mechanism, this work focuses on the impact of sequence modeling architectures on base capabilities. Specifically, our concern is: How exactly do sequence modeling architectures affect the base capabilities of pre-trained language models? In this work, we first point out that the mixed domain pre-training setting commonly adopted in existing architecture design works fails to adequately reveal the differences in base capabilities among various architectures. To address this, we propose a limited domain pre-training setting with out-of-distribution testing, which successfully uncovers significant differences in base capabilities among architectures at an early stage. Next, we analyze the base capabilities of stateful sequence modeling architectures, and find that they exhibit significant degradation in base capabilities compared to the Transformer. Then, through a series of architecture component analysis, we summarize a key architecture design principle: A sequence modeling architecture need possess full-sequence arbitrary selection capability to avoid degradation in base capabilities. Finally, we empirically validate this principle using an extremely simple Top-1 element selection architecture and further generalize it to a more practical Top-1 chunk selection architecture. Experimental results demonstrate our proposed sequence modeling architecture design principle and suggest that our work can serve as a valuable reference for future architecture improvements and novel designs.
Abstract:Arena-based evaluation is a fundamental yet significant evaluation paradigm for modern AI models, especially large language models (LLMs). Existing framework based on ELO rating system suffers from the inevitable instability problem due to ranking inconsistency and the lack of attention to the varying abilities of annotators. In this paper, we introduce a novel stable arena framework to address these issues by enhancing the ELO Rating System. Specifically, we replace the iterative update method with a Maximum Likelihood Estimation (MLE) approach, m-ELO, and provide theoretical proof of the consistency and stability of the MLE approach for model ranking. Additionally, we proposed the am-ELO, which modify the Elo Rating's probability function to incorporate annotator abilities, enabling the simultaneous estimation of model scores and annotator reliability. Experiments demonstrate that this method ensures stability, proving that this framework offers a more robust, accurate, and stable evaluation method for LLMs.
Abstract:Empirical Risk Minimization (ERM) models often rely on spurious correlations between features and labels during the learning process, leading to shortcut learning behavior that undermines robustness generalization performance. Current research mainly targets identifying or mitigating a single shortcut; however, in real-world scenarios, cues within the data are diverse and unknown. In empirical studies, we reveal that the models rely to varying extents on different shortcuts. Compared to weak shortcuts, models depend more heavily on strong shortcuts, resulting in their poor generalization ability. To address these challenges, we propose MiMu, a novel method integrated with Transformer-based ERMs designed to Mitigate Multiple shortcut learning behavior, which incorporates self-calibration strategy and self-improvement strategy. In the source model, we preliminarily propose the self-calibration strategy to prevent the model from relying on shortcuts and make overconfident predictions. Then, we further design self-improvement strategy in target model to reduce the reliance on multiple shortcuts. The random mask strategy involves randomly masking partial attention positions to diversify the focus of target model other than concentrating on a fixed region. Meanwhile, the adaptive attention alignment module facilitates the alignment of attention weights to the calibrated source model, without the need for post-hoc attention maps or supervision. Finally, extensive experiments conducted on Natural Language Processing (NLP) and Computer Vision (CV) demonstrate the effectiveness of MiMu in improving robustness generalization abilities.