Abstract:High-fidelity and efficient simulation of fluid dynamics drive progress in various scientific and engineering applications. Traditional computational fluid dynamics methods offer strong interpretability and guaranteed convergence, but rely on fine spatial and temporal meshes, incurring prohibitive computational costs. Physics-informed neural networks (PINNs) and neural operators aim to accelerate PDE solvers using deep learning techniques. However, PINNs require extensive retraining and careful tuning, and purely data-driven operators demand large labeled datasets. Hybrid physics-aware methods embed numerical discretizations into network architectures or loss functions, but achieve marginal speed gains and become unstable when balancing coarse priors against high-fidelity measurements. To this end, we introduce OmniFluids, a unified physics pre-trained operator learning framework that integrates physics-only pre-training, coarse-grid operator distillation, and few-shot fine-tuning, which enables fast inference and accurate prediction under limited or zero data supervision. For architectural design, the key components of OmniFluids include a mixture of operators, a multi-frame decoder, and factorized Fourier layers, which enable efficient and scalable modeling of diverse physical tasks while maintaining seamless integration with physics-based supervision. Across a broad range of two- and three-dimensional benchmarks, OmniFluids significantly outperforms state-of-the-art AI-driven methods in flow field reconstruction and turbulence statistics accuracy, delivering 10-100x speedups compared to classical solvers, and accurately recovers unknown physical parameters from sparse, noisy data. This work establishes a new paradigm for efficient and generalizable surrogate modeling in complex fluid systems under limited data availability.
Abstract:Understanding and reasoning about dynamics governed by physical laws through visual observation, akin to human capabilities in the real world, poses significant challenges. Currently, object-centric dynamic simulation methods, which emulate human behavior, have achieved notable progress but overlook two critical aspects: 1) the integration of physical knowledge into models. Humans gain physical insights by observing the world and apply this knowledge to accurately reason about various dynamic scenarios; 2) the validation of model adaptability across diverse scenarios. Real-world dynamics, especially those involving fluids and objects, demand models that not only capture object interactions but also simulate fluid flow characteristics. To address these gaps, we introduce SlotPi, a slot-based physics-informed object-centric reasoning model. SlotPi integrates a physical module based on Hamiltonian principles with a spatio-temporal prediction module for dynamic forecasting. Our experiments highlight the model's strengths in tasks such as prediction and Visual Question Answering (VQA) on benchmark and fluid datasets. Furthermore, we have created a real-world dataset encompassing object interactions, fluid dynamics, and fluid-object interactions, on which we validated our model's capabilities. The model's robust performance across all datasets underscores its strong adaptability, laying a foundation for developing more advanced world models.
Abstract:Sharpness-Aware Minimization (SAM) optimizer enhances the generalization ability of the machine learning model by exploring the flat minima landscape through weight perturbations. Despite its empirical success, SAM introduces an additional hyper-parameter, the perturbation radius, which causes the sensitivity of SAM to it. Moreover, it has been proved that the perturbation radius and learning rate of SAM are constrained by problem-dependent parameters to guarantee convergence. These limitations indicate the requirement of parameter-tuning in practical applications. In this paper, we propose the algorithm LightSAM which sets the perturbation radius and learning rate of SAM adaptively, thus extending the application scope of SAM. LightSAM employs three popular adaptive optimizers, including AdaGrad-Norm, AdaGrad and Adam, to replace the SGD optimizer for weight perturbation and model updating, reducing sensitivity to parameters. Theoretical results show that under weak assumptions, LightSAM could converge ideally with any choices of perturbation radius and learning rate, thus achieving parameter-agnostic. We conduct preliminary experiments on several deep learning tasks, which together with the theoretical findings validate the the effectiveness of LightSAM.
Abstract:Vision-Language-Action (VLA) models for autonomous driving show promise but falter in unstructured corner case scenarios, largely due to a scarcity of targeted benchmarks. To address this, we introduce Impromptu VLA. Our core contribution is the Impromptu VLA Dataset: over 80,000 meticulously curated video clips, distilled from over 2M source clips sourced from 8 open-source large-scale datasets. This dataset is built upon our novel taxonomy of four challenging unstructured categories and features rich, planning-oriented question-answering annotations and action trajectories. Crucially, experiments demonstrate that VLAs trained with our dataset achieve substantial performance gains on established benchmarks--improving closed-loop NeuroNCAP scores and collision rates, and reaching near state-of-the-art L2 accuracy in open-loop nuScenes trajectory prediction. Furthermore, our Q&A suite serves as an effective diagnostic, revealing clear VLM improvements in perception, prediction, and planning. Our code, data and models are available at https://github.com/ahydchh/Impromptu-VLA.
Abstract:Partial differential equations (PDEs) govern the spatiotemporal evolution of various physical systems. Classical numerical solvers, while accurate, require fine discretization and full knowledge of the governing PDEs, limiting their applicability when the physics is unknown or fast inference is required. Data-driven neural PDE solvers alleviate these constraints by learning from data but demand large training datasets and perform poorly in data-scarce regimes. Physics-aware methods mitigate data requirements by incorporating physical knowledge yet rely on known PDE terms or local numerical schemes, restricting their ability to handle unknown or globally coupled systems. In this work, we propose the Spectral-inspired Neural Operator (SINO), a novel framework that learns PDE operators from limited trajectories (as few as 2-5), without any known PDE terms. SINO operates in the frequency domain and introduces a Frequency-to-Vector module to learn spectral representations analogous to derivative multipliers. To model nonlinear physical interactions, we design a nonlinear operator block that includes a $\Pi$-Block with low-pass filtering to prevent aliasing. Finally, we introduce an operator distillation technique to distill the trained model for efficient inference. SINO achieves state-of-the-art results across multiple PDE benchmarks, demonstrating strong discretization invariance and robust generalization to out-of-distribution initial conditions. To our knowledge, SINO is the first physics-aware method capable of accurately simulating globally coupled systems (e.g., the Navier-Stokes equations) from limited data without any explicit PDE terms.
Abstract:Research interest in end-to-end autonomous driving has surged owing to its fully differentiable design integrating modular tasks, i.e. perception, prediction and planing, which enables optimization in pursuit of the ultimate goal. Despite the great potential of the end-to-end paradigm, existing methods suffer from several aspects including expensive BEV (bird's eye view) computation, action diversity, and sub-optimal decision in complex real-world scenarios. To address these challenges, we propose a novel hybrid sparse-dense diffusion policy, empowered by a Vision-Language Model (VLM), called Diff-VLA. We explore the sparse diffusion representation for efficient multi-modal driving behavior. Moreover, we rethink the effectiveness of VLM driving decision and improve the trajectory generation guidance through deep interaction across agent, map instances and VLM output. Our method shows superior performance in Autonomous Grand Challenge 2025 which contains challenging real and reactive synthetic scenarios. Our methods achieves 45.0 PDMS.
Abstract:In the era of large language models (LLMs), high-quality, domain-rich, and continuously evolving datasets capturing expert-level knowledge, core human values, and reasoning are increasingly valuable. This position paper argues that OpenReview -- the continually evolving repository of research papers, peer reviews, author rebuttals, meta-reviews, and decision outcomes -- should be leveraged more broadly as a core community asset for advancing research in the era of LLMs. We highlight three promising areas in which OpenReview can uniquely contribute: enhancing the quality, scalability, and accountability of peer review processes; enabling meaningful, open-ended benchmarks rooted in genuine expert deliberation; and supporting alignment research through real-world interactions reflecting expert assessment, intentions, and scientific values. To better realize these opportunities, we suggest the community collaboratively explore standardized benchmarks and usage guidelines around OpenReview, inviting broader dialogue on responsible data use, ethical considerations, and collective stewardship.
Abstract:Despite recent progress in text-to-image (T2I) generation, existing models often struggle to faithfully capture user intentions from short and under-specified prompts. While prior work has attempted to enhance prompts using large language models (LLMs), these methods frequently generate stylistic or unrealistic content due to insufficient grounding in visual semantics and real-world composition. Inspired by recent advances in reasoning for language model, we propose RePrompt, a novel reprompting framework that introduces explicit reasoning into the prompt enhancement process via reinforcement learning. Instead of relying on handcrafted rules or stylistic rewrites, our method trains a language model to generate structured, self-reflective prompts by optimizing for image-level outcomes. The tailored reward models assesse the generated images in terms of human preference, semantic alignment, and visual composition, providing indirect supervision to refine prompt generation. Our approach enables end-to-end training without human-annotated data. Experiments on GenEval and T2I-Compbench show that RePrompt significantly boosts spatial layout fidelity and compositional generalization across diverse T2I backbones, establishing new state-of-the-art results.
Abstract:Developing inverse design methods for functional materials with specific properties is critical to advancing fields like renewable energy, catalysis, energy storage, and carbon capture. Generative models based on diffusion principles can directly produce new materials that meet performance constraints, thereby significantly accelerating the material design process. However, existing methods for generating and predicting crystal structures often remain limited by low success rates. In this work, we propose a novel inverse material design generative framework called InvDesFlow-AL, which is based on active learning strategies. This framework can iteratively optimize the material generation process to gradually guide it towards desired performance characteristics. In terms of crystal structure prediction, the InvDesFlow-AL model achieves an RMSE of 0.0423 {\AA}, representing an 32.96% improvement in performance compared to exsisting generative models. Additionally, InvDesFlow-AL has been successfully validated in the design of low-formation-energy and low-Ehull materials. It can systematically generate materials with progressively lower formation energies while continuously expanding the exploration across diverse chemical spaces. These results fully demonstrate the effectiveness of the proposed active learning-driven generative model in accelerating material discovery and inverse design. To further prove the effectiveness of this method, we took the search for BCS superconductors under ambient pressure as an example explored by InvDesFlow-AL. As a result, we successfully identified Li\(_2\)AuH\(_6\) as a conventional BCS superconductor with an ultra-high transition temperature of 140 K. This discovery provides strong empirical support for the application of inverse design in materials science.
Abstract:Recent advancements in high-definition \emph{HD} map construction have demonstrated the effectiveness of dense representations, which heavily rely on computationally intensive bird's-eye view \emph{BEV} features. While sparse representations offer a more efficient alternative by avoiding dense BEV processing, existing methods often lag behind due to the lack of tailored designs. These limitations have hindered the competitiveness of sparse representations in online HD map construction. In this work, we systematically revisit and enhance sparse representation techniques, identifying key architectural and algorithmic improvements that bridge the gap with--and ultimately surpass--dense approaches. We introduce a dedicated network architecture optimized for sparse map feature extraction, a sparse-dense segmentation auxiliary task to better leverage geometric and semantic cues, and a denoising module guided by physical priors to refine predictions. Through these enhancements, our method achieves state-of-the-art performance on the nuScenes dataset, significantly advancing HD map construction and centerline detection. Specifically, SparseMeXt-Tiny reaches a mean average precision \emph{mAP} of 55.5% at 32 frames per second \emph{fps}, while SparseMeXt-Base attains 65.2% mAP. Scaling the backbone and decoder further, SparseMeXt-Large achieves an mAP of 68.9% at over 20 fps, establishing a new benchmark for sparse representations in HD map construction. These results underscore the untapped potential of sparse methods, challenging the conventional reliance on dense representations and redefining efficiency-performance trade-offs in the field.