Abstract:Instruction tuning has enabled large language models (LLMs) to achieve remarkable performance, but its success heavily depends on the availability of large-scale, high-quality instruction-response pairs. However, current methods for scaling up data generation often overlook a crucial aspect: the alignment between instructions and responses. We hypothesize that high-quality instruction-response pairs are not defined by the individual quality of each component, but by the extent of their alignment with each other. To address this, we propose a Mutual Alignment Framework (MAIN) that ensures coherence between the instruction and response through mutual constraints. Experiments demonstrate that models such as LLaMA and Mistral, fine-tuned within this framework, outperform traditional methods across multiple benchmarks. This approach underscores the critical role of instruction-response alignment in enabling scalable and high-quality instruction tuning for LLMs.
Abstract:The rise of customized diffusion models has spurred a boom in personalized visual content creation, but also poses risks of malicious misuse, severely threatening personal privacy and copyright protection. Some studies show that the aesthetic properties of images are highly positively correlated with human perception of image quality. Inspired by this, we approach the problem from a novel and intriguing aesthetic perspective to degrade the generation quality of maliciously customized models, thereby achieving better protection of facial identity. Specifically, we propose a Hierarchical Anti-Aesthetic (HAA) framework to fully explore aesthetic cues, which consists of two key branches: 1) Global Anti-Aesthetics: By establishing a global anti-aesthetic reward mechanism and a global anti-aesthetic loss, it can degrade the overall aesthetics of the generated content; 2) Local Anti-Aesthetics: A local anti-aesthetic reward mechanism and a local anti-aesthetic loss are designed to guide adversarial perturbations to disrupt local facial identity. By seamlessly integrating both branches, our HAA effectively achieves the goal of anti-aesthetics from a global to a local level during customized generation. Extensive experiments show that HAA outperforms existing SOTA methods largely in identity removal, providing a powerful tool for protecting facial privacy and copyright.
Abstract:Novel view synthesis (NVS) in low-light scenes remains a significant challenge due to degraded inputs characterized by severe noise, low dynamic range (LDR) and unreliable initialization. While recent NeRF-based approaches have shown promising results, most suffer from high computational costs, and some rely on carefully captured or pre-processed data--such as RAW sensor inputs or multi-exposure sequences--which severely limits their practicality. In contrast, 3D Gaussian Splatting (3DGS) enables real-time rendering with competitive visual fidelity; however, existing 3DGS-based methods struggle with low-light sRGB inputs, resulting in unstable Gaussian initialization and ineffective noise suppression. To address these challenges, we propose LL-Gaussian, a novel framework for 3D reconstruction and enhancement from low-light sRGB images, enabling pseudo normal-light novel view synthesis. Our method introduces three key innovations: 1) an end-to-end Low-Light Gaussian Initialization Module (LLGIM) that leverages dense priors from learning-based MVS approach to generate high-quality initial point clouds; 2) a dual-branch Gaussian decomposition model that disentangles intrinsic scene properties (reflectance and illumination) from transient interference, enabling stable and interpretable optimization; 3) an unsupervised optimization strategy guided by both physical constrains and diffusion prior to jointly steer decomposition and enhancement. Additionally, we contribute a challenging dataset collected in extreme low-light environments and demonstrate the effectiveness of LL-Gaussian. Compared to state-of-the-art NeRF-based methods, LL-Gaussian achieves up to 2,000 times faster inference and reduces training time to just 2%, while delivering superior reconstruction and rendering quality.
Abstract:Accurately predicting fluid dynamics and evolution has been a long-standing challenge in physical sciences. Conventional deep learning methods often rely on the nonlinear modeling capabilities of neural networks to establish mappings between past and future states, overlooking the fluid dynamics, or only modeling the velocity field, neglecting the coupling of multiple physical quantities. In this paper, we propose a new physics-informed learning approach that incorporates coupled physical quantities into the prediction process to assist with forecasting. Central to our method lies in the discretization of physical equations, which are directly integrated into the model architecture and loss function. This integration enables the model to provide robust, long-term future predictions. By incorporating physical equations, our model demonstrates temporal extrapolation and spatial generalization capabilities. Experimental results show that our approach achieves the state-of-the-art performance in spatiotemporal prediction across both numerical simulations and real-world extreme-precipitation nowcasting benchmarks.
Abstract:It is explored that available credible evidence fusion schemes suffer from the potential inconsistency because credibility calculation and Dempster's combination rule-based fusion are sequentially performed in an open-loop style. This paper constructs evidence credibility from the perspective of the degree of support for events within the framework of discrimination (FOD) and proposes an iterative credible evidence fusion (ICEF) to overcome the inconsistency in view of close-loop control. On one hand, the ICEF introduces the fusion result into credibility assessment to establish the correlation between credibility and the fusion result. On the other hand, arithmetic-geometric divergence is promoted based on the exponential normalization of plausibility and belief functions to measure evidence conflict, called plausibility-belief arithmetic-geometric divergence (PBAGD), which is superior in capturing the correlation and difference of FOD subsets, identifying abnormal sources, and reducing their fusion weights. The ICEF is compared with traditional methods by combining different evidence difference measure forms via numerical examples to verify its performance. Simulations on numerical examples and benchmark datasets reflect the adaptability of PBAGD to the proposed fusion strategy.
Abstract:Reliable autonomous driving systems require high-definition (HD) map that contains detailed map information for planning and navigation. However, pre-build HD map requires a large cost. Visual-based Online Map Generation (OMG) has become an alternative low-cost solution to build a local HD map. Query-based BEV Transformer has been a base model for this task. This model learns HD map predictions from an initial map queries distribution which is obtained by offline optimization on training set. Besides the quality of BEV feature, the performance of this model also highly relies on the capacity of initial map query distribution. However, this distribution is limited because the limited query number. To make map predictions optimal on each test sample, it is essential to generate a suitable initial distribution for each specific scenario. This paper proposes to decompose the whole HD map distribution into a set of point representations, namely map query bank (MQBank). To build specific map query initial distributions of different scenarios, low-cost standard definition map (SD map) data is introduced as a kind of prior knowledge. Moreover, each layer of map decoder network learns instance-level map query features, which will lose detailed information of each point. However, BEV feature map is a point-level dense feature. It is important to keep point-level information in map queries when interacting with BEV feature map. This can also be solved with map query bank method. Final experiments show a new insight on SD map prior and a new record on OpenLaneV2 benchmark with 40.5%, 45.7% mAP on vehicle lane and pedestrian area.
Abstract:Novel-view synthesis (NVS) for dynamic scenes from 2D images presents significant challenges due to the spatial complexity and temporal variability of such scenes. Recently, inspired by the remarkable success of NVS using 3D Gaussian Splatting (3DGS), researchers have sought to extend 3D Gaussian models to four dimensions (4D) for dynamic novel-view synthesis. However, methods based on 4D rotation and scaling introduce spatiotemporal deformation into the 4D covariance matrix, necessitating the slicing of 4D Gaussians into 3D Gaussians. This process increases redundant computations as timestamps change-an inherent characteristic of dynamic scene rendering. Additionally, performing calculations on a four-dimensional matrix is computationally intensive. In this paper, we introduce Disentangled 4D Gaussian Splatting (Disentangled4DGS), a novel representation and rendering approach that disentangles temporal and spatial deformations, thereby eliminating the reliance on 4D matrix computations. We extend the 3DGS rendering process to 4D, enabling the projection of temporal and spatial deformations into dynamic 2D Gaussians in ray space. Consequently, our method facilitates faster dynamic scene synthesis. Moreover, it reduces storage requirements by at least 4.5\% due to our efficient presentation method. Our approach achieves an unprecedented average rendering speed of 343 FPS at a resolution of $1352\times1014$ on an RTX 3090 GPU, with experiments across multiple benchmarks demonstrating its competitive performance in both monocular and multi-view scenarios.
Abstract:Neural networks have emerged as a powerful paradigm for tasks in high energy physics, yet their opaque training process renders them as a black box. In contrast, the traditional cut flow method offers simplicity and interpretability but demands human effort to identify optimal boundaries. To merge the strengths of both approaches, we propose the Learnable Cut Flow (LCF), a neural network that transforms the traditional cut selection into a fully differentiable, data-driven process. LCF implements two cut strategies-parallel, where observable distributions are treated independently, and sequential, where prior cuts shape subsequent ones-to flexibly determine optimal boundaries. Building on this, we introduce the Learnable Importance, a metric that quantifies feature importance and adjusts their contributions to the loss accordingly, offering model-driven insights unlike ad-hoc metrics. To ensure differentiability, a modified loss function replaces hard cuts with mask operations, preserving data shape throughout the training process. LCF is tested on six varied mock datasets and a realistic diboson vs. QCD dataset. Results demonstrate that LCF (1) accurately learns cut boundaries across typical feature distributions in both parallel and sequential strategies, (2) assigns higher importance to discriminative features with minimal overlap, (3) handles redundant or correlated features robustly, and (4) performs effectively in real-world scenarios. In diboson dataset, LCF initially underperforms boosted decision trees and multiplayer perceptrons when using all observables. However, pruning less critical features-guided by learned importance-boosts its performance to match or exceed these baselines. LCF bridges the gap between traditional cut flow method and modern black-box neural networks, delivering actionable insights into the training process and feature importance.
Abstract:Generating flexible-view 3D scenes, including 360{\deg} rotation and zooming, from single images is challenging due to a lack of 3D data. To this end, we introduce FlexWorld, a novel framework consisting of two key components: (1) a strong video-to-video (V2V) diffusion model to generate high-quality novel view images from incomplete input rendered from a coarse scene, and (2) a progressive expansion process to construct a complete 3D scene. In particular, leveraging an advanced pre-trained video model and accurate depth-estimated training pairs, our V2V model can generate novel views under large camera pose variations. Building upon it, FlexWorld progressively generates new 3D content and integrates it into the global scene through geometry-aware scene fusion. Extensive experiments demonstrate the effectiveness of FlexWorld in generating high-quality novel view videos and flexible-view 3D scenes from single images, achieving superior visual quality under multiple popular metrics and datasets compared to existing state-of-the-art methods. Qualitatively, we highlight that FlexWorld can generate high-fidelity scenes with flexible views like 360{\deg} rotations and zooming. Project page: https://ml-gsai.github.io/FlexWorld.
Abstract:Crystal Structure Prediction (CSP), which aims to generate stable crystal structures from compositions, represents a critical pathway for discovering novel materials. While structure prediction tasks in other domains, such as proteins, have seen remarkable progress, CSP remains a relatively underexplored area due to the more complex geometries inherent in crystal structures. In this paper, we propose Siamese foundation models specifically designed to address CSP. Our pretrain-finetune framework, named DAO, comprises two complementary foundation models: DAO-G for structure generation and DAO-P for energy prediction. Experiments on CSP benchmarks (MP-20 and MPTS-52) demonstrate that our DAO-G significantly surpasses state-of-the-art (SOTA) methods across all metrics. Extensive ablation studies further confirm that DAO-G excels in generating diverse polymorphic structures, and the dataset relaxation and energy guidance provided by DAO-P are essential for enhancing DAO-G's performance. When applied to three real-world superconductors ($\text{CsV}_3\text{Sb}_5$, $ \text{Zr}_{16}\text{Rh}_8\text{O}_4$ and $\text{Zr}_{16}\text{Pd}_8\text{O}_4$) that are known to be challenging to analyze, our foundation models achieve accurate critical temperature predictions and structure generations. For instance, on $\text{CsV}_3\text{Sb}_5$, DAO-G generates a structure close to the experimental one with an RMSE of 0.0085; DAO-P predicts the $T_c$ value with high accuracy (2.26 K vs. the ground-truth value of 2.30 K). In contrast, conventional DFT calculators like Quantum Espresso only successfully derive the structure of the first superconductor within an acceptable time, while the RMSE is nearly 8 times larger, and the computation speed is more than 1000 times slower. These compelling results collectively highlight the potential of our approach for advancing materials science research and development.