Multi-Domain Recommendation (MDR) has gained significant attention in recent years, which leverages data from multiple domains to enhance their performance concurrently.However, current MDR models are confronted with two limitations. Firstly, the majority of these models adopt an approach that explicitly shares parameters between domains, leading to mutual interference among them. Secondly, due to the distribution differences among domains, the utilization of static parameters in existing methods limits their flexibility to adapt to diverse domains. To address these challenges, we propose a novel model Hyper Adapter for Multi-Domain Recommendation (HAMUR). Specifically, HAMUR consists of two components: (1). Domain-specific adapter, designed as a pluggable module that can be seamlessly integrated into various existing multi-domain backbone models, and (2). Domain-shared hyper-network, which implicitly captures shared information among domains and dynamically generates the parameters for the adapter. We conduct extensive experiments on two public datasets using various backbone networks. The experimental results validate the effectiveness and scalability of the proposed model.
Click-Through Rate (CTR) prediction is a fundamental technique in recommendation and advertising systems. Recent studies have shown that implementing multi-scenario recommendations contributes to strengthening information sharing and improving overall performance. However, existing multi-scenario models only consider coarse-grained explicit scenario modeling that depends on pre-defined scenario identification from manual prior rules, which is biased and sub-optimal. To address these limitations, we propose a Scenario-Aware Hierarchical Dynamic Network for Multi-Scenario Recommendations (HierRec), which perceives implicit patterns adaptively and conducts explicit and implicit scenario modeling jointly. In particular, HierRec designs a basic scenario-oriented module based on the dynamic weight to capture scenario-specific information. Then the hierarchical explicit and implicit scenario-aware modules are proposed to model hybrid-grained scenario information. The multi-head implicit modeling design contributes to perceiving distinctive patterns from different perspectives. Our experiments on two public datasets and real-world industrial applications on a mainstream online advertising platform demonstrate that our HierRec outperforms existing models significantly.
Click-Through Rate (CTR) prediction, crucial in applications like recommender systems and online advertising, involves ranking items based on the likelihood of user clicks. User behavior sequence modeling has marked progress in CTR prediction, which extracts users' latent interests from their historical behavior sequences to facilitate accurate CTR prediction. Recent research explores using implicit feedback sequences, like unclicked records, to extract diverse user interests. However, these methods encounter key challenges: 1) temporal misalignment due to disparate sequence time ranges and 2) the lack of fine-grained interaction among feedback sequences. To address these challenges, we propose a novel framework called TEM4CTR, which ensures temporal alignment among sequences while leveraging auxiliary feedback information to enhance click behavior at the item level through a representation projection mechanism. Moreover, this projection-based information transfer module can effectively alleviate the negative impact of irrelevant or even potentially detrimental components of the auxiliary feedback information on the learning process of click behavior. Comprehensive experiments on public and industrial datasets confirm the superiority and effectiveness of TEM4CTR, showcasing the significance of temporal alignment in multi-feedback modeling.
In the domain of streaming recommender systems, conventional methods for addressing new user IDs or item IDs typically involve assigning initial ID embeddings randomly. However, this practice results in two practical challenges: (i) Items or users with limited interactive data may yield suboptimal prediction performance. (ii) Embedding new IDs or low-frequency IDs necessitates consistently expanding the embedding table, leading to unnecessary memory consumption. In light of these concerns, we introduce a reinforcement learning-driven framework, namely AutoAssign+, that facilitates Automatic Shared Embedding Assignment Plus. To be specific, AutoAssign+ utilizes an Identity Agent as an actor network, which plays a dual role: (i) Representing low-frequency IDs field-wise with a small set of shared embeddings to enhance the embedding initialization, and (ii) Dynamically determining which ID features should be retained or eliminated in the embedding table. The policy of the agent is optimized with the guidance of a critic network. To evaluate the effectiveness of our approach, we perform extensive experiments on three commonly used benchmark datasets. Our experiment results demonstrate that AutoAssign+ is capable of significantly enhancing recommendation performance by mitigating the cold-start problem. Furthermore, our framework yields a reduction in memory usage of approximately 20-30%, verifying its practical effectiveness and efficiency for streaming recommender systems.
Recommender systems (RS) play important roles to match users' information needs for Internet applications. In natural language processing (NLP) domains, large language model (LLM) has shown astonishing emergent abilities (e.g., instruction following, reasoning), thus giving rise to the promising research direction of adapting LLM to RS for performance enhancements and user experience improvements. In this paper, we conduct a comprehensive survey on this research direction from an application-oriented view. We first summarize existing research works from two orthogonal perspectives: where and how to adapt LLM to RS. For the "WHERE" question, we discuss the roles that LLM could play in different stages of the recommendation pipeline, i.e., feature engineering, feature encoder, scoring/ranking function, and pipeline controller. For the "HOW" question, we investigate the training and inference strategies, resulting in two fine-grained taxonomy criteria, i.e., whether to tune LLMs or not, and whether to involve conventional recommendation model (CRM) for inference. Detailed analysis and general development trajectories are provided for both questions, respectively. Then, we highlight key challenges in adapting LLM to RS from three aspects, i.e., efficiency, effectiveness, and ethics. Finally, we summarize the survey and discuss the future prospects. We also actively maintain a GitHub repository for papers and other related resources in this rising direction: https://github.com/CHIANGEL/Awesome-LLM-for-RecSys.
Multi-types of user behavior data (e.g., clicking, adding to cart, and purchasing) are recorded in most real-world recommendation scenarios, which can help to learn users' multi-faceted preferences. However, it is challenging to explore multi-behavior data due to the unbalanced data distribution and sparse target behavior, which lead to the inadequate modeling of high-order relations when treating multi-behavior data ''as features'' and gradient conflict in multitask learning when treating multi-behavior data ''as labels''. In this paper, we propose CIGF, a Compressed Interaction Graph based Framework, to overcome the above limitations. Specifically, we design a novel Compressed Interaction Graph Convolution Network (CIGCN) to model instance-level high-order relations explicitly. To alleviate the potential gradient conflict when treating multi-behavior data ''as labels'', we propose a Multi-Expert with Separate Input (MESI) network with separate input on the top of CIGCN for multi-task learning. Comprehensive experiments on three large-scale real-world datasets demonstrate the superiority of CIGF. Ablation studies and in-depth analysis further validate the effectiveness of our proposed model in capturing high-order relations and alleviating gradient conflict. The source code and datasets are available at https://github.com/MC-CV/CIGF.
Multi-task learning (MTL) aims at learning related tasks in a unified model to achieve mutual improvement among tasks considering their shared knowledge. It is an important topic in recommendation due to the demand for multi-task prediction considering performance and efficiency. Although MTL has been well studied and developed, there is still a lack of systematic review in the recommendation community. To fill the gap, we provide a comprehensive review of existing multi-task deep recommender systems (MTDRS) in this survey. To be specific, the problem definition of MTDRS is first given, and it is compared with other related areas. Next, the development of MTDRS is depicted and the taxonomy is introduced from the task relation and methodology aspects. Specifically, the task relation is categorized into parallel, cascaded, and auxiliary with main, while the methodology is grouped into parameter sharing, optimization, and training mechanism. The survey concludes by summarizing the application and public datasets of MTDRS and highlighting the challenges and future directions of the field.
Embedding tables are usually huge in click-through rate (CTR) prediction models. To train and deploy the CTR models efficiently and economically, it is necessary to compress their embedding tables at the training stage. To this end, we formulate a novel quantization training paradigm to compress the embeddings from the training stage, termed low-precision training (LPT). Also, we provide theoretical analysis on its convergence. The results show that stochastic weight quantization has a faster convergence rate and a smaller convergence error than deterministic weight quantization in LPT. Further, to reduce the accuracy degradation, we propose adaptive low-precision training (ALPT) that learns the step size (i.e., the quantization resolution) through gradient descent. Experiments on two real-world datasets confirm our analysis and show that ALPT can significantly improve the prediction accuracy, especially at extremely low bit widths. For the first time in CTR models, we successfully train 8-bit embeddings without sacrificing prediction accuracy. The code of ALPT is publicly available.