Max Planck Institute for Intelligent Systems
Abstract:Addressing selection bias in latent variable causal discovery is important yet underexplored, largely due to a lack of suitable statistical tools: While various tools beyond basic conditional independencies have been developed to handle latent variables, none have been adapted for selection bias. We make an attempt by studying rank constraints, which, as a generalization to conditional independence constraints, exploits the ranks of covariance submatrices in linear Gaussian models. We show that although selection can significantly complicate the joint distribution, interestingly, the ranks in the biased covariance matrices still preserve meaningful information about both causal structures and selection mechanisms. We provide a graph-theoretic characterization of such rank constraints. Using this tool, we demonstrate that the one-factor model, a classical latent variable model, can be identified under selection bias. Simulations and real-world experiments confirm the effectiveness of using our rank constraints.
Abstract:Compositional generalization -- the ability to understand and generate novel combinations of learned concepts -- enables models to extend their capabilities beyond limited experiences. While effective, the data structures and principles that enable this crucial capability remain poorly understood. We propose that compositional generalization fundamentally requires decomposing high-level concepts into basic, low-level concepts that can be recombined across similar contexts, similar to how humans draw analogies between concepts. For example, someone who has never seen a peacock eating rice can envision this scene by relating it to their previous observations of a chicken eating rice. In this work, we formalize these intuitive processes using principles of causal modularity and minimal changes. We introduce a hierarchical data-generating process that naturally encodes different levels of concepts and their interaction mechanisms. Theoretically, we demonstrate that this approach enables compositional generalization supporting complex relations between composed concepts, advancing beyond prior work that assumes simpler interactions like additive effects. Critically, we also prove that this latent hierarchical structure is provably recoverable (identifiable) from observable data like text-image pairs, a necessary step for learning such a generative process. To validate our theory, we apply insights from our theoretical framework and achieve significant improvements on benchmark datasets.
Abstract:Deep generative models, while revolutionizing fields like image and text generation, largely operate as opaque black boxes, hindering human understanding, control, and alignment. While methods like sparse autoencoders (SAEs) show remarkable empirical success, they often lack theoretical guarantees, risking subjective insights. Our primary objective is to establish a principled foundation for interpretable generative models. We demonstrate that the principle of causal minimality -- favoring the simplest causal explanation -- can endow the latent representations of diffusion vision and autoregressive language models with clear causal interpretation and robust, component-wise identifiable control. We introduce a novel theoretical framework for hierarchical selection models, where higher-level concepts emerge from the constrained composition of lower-level variables, better capturing the complex dependencies in data generation. Under theoretically derived minimality conditions (manifesting as sparsity or compression constraints), we show that learned representations can be equivalent to the true latent variables of the data-generating process. Empirically, applying these constraints to leading generative models allows us to extract their innate hierarchical concept graphs, offering fresh insights into their internal knowledge organization. Furthermore, these causally grounded concepts serve as levers for fine-grained model steering, paving the way for transparent, reliable systems.
Abstract:Due to excessive memory overhead, most Multimodal Large Language Models (MLLMs) can only process videos of limited frames. In this paper, we propose an effective and efficient paradigm to remedy this shortcoming, termed One-shot video-Clip based Retrieval AuGmentation (OneClip-RAG). Compared with existing video RAG methods, OneClip-RAG makes full use of the merits of video clips for augmented video understanding in terms of both knowledge integrity and semantic coherence. Besides, it is also equipped with a novel query-guided video chunking algorithm that can unify clip chunking and cross-modal retrieval in one processing step, avoiding redundant computations. To improve instruction following, we further propose a new dataset called SynLongVideo and design a progressive training regime for OneClip-RAG. OneClip-RAG is plugged into five recent MLLMs and validated on a set of long-video benchmarks. Experimental results not only show the obvious performance gains by OneClip-RAG over MLLMs, e.g., boosting InternLV2 8B and Qwen2-VL 7B to the level of GPT-4o on MLVU, but also show its superior efficiency in handling long videos. e.g., enabling LLaVA-Video understand up to an hour of videos in less than 2.2 minutes on a single 4090 GPU.
Abstract:Computerized Adaptive Testing (CAT) is a widely used technology for evaluating learners' proficiency in online education platforms. By leveraging prior estimates of proficiency to select questions and updating the estimates iteratively based on responses, CAT enables personalized learner modeling and has attracted substantial attention. Despite this progress, most existing works focus primarily on improving diagnostic accuracy, while overlooking the selection bias inherent in the adaptive process. Selection Bias arises because the question selection is strongly influenced by the estimated proficiency, such as assigning easier questions to learners with lower proficiency and harder ones to learners with higher proficiency. Since the selection depends on prior estimation, this bias propagates into the diagnosis model, which is further amplified during iterative updates, leading to misalignment and biased predictions. Moreover, the imbalanced nature of learners' historical interactions often exacerbates the bias in diagnosis models. To address this issue, we propose a debiasing framework consisting of two key modules: Cross-Attribute Examinee Retrieval and Selective Mixup-based Regularization. First, we retrieve balanced examinees with relatively even distributions of correct and incorrect responses and use them as neutral references for biased examinees. Then, mixup is applied between each biased examinee and its matched balanced counterpart under label consistency. This augmentation enriches the diversity of bias-conflicting samples and smooths selection boundaries. Finally, extensive experiments on two benchmark datasets with multiple advanced diagnosis models demonstrate that our method substantially improves both the generalization ability and fairness of question selection in CAT.
Abstract:Autoregressive (AR) approaches, which represent images as sequences of discrete tokens from a finite codebook, have achieved remarkable success in image generation. However, the quantization process and the limited codebook size inevitably discard fine-grained information, placing bottlenecks on fidelity. Motivated by this limitation, recent studies have explored autoregressive modeling in continuous latent spaces, which offers higher generation quality. Yet, unlike discrete tokens constrained by a fixed codebook, continuous representations lie in a vast and unstructured space, posing significant challenges for efficient autoregressive modeling. To address these challenges, we introduce MixAR, a novel framework that leverages mixture training paradigms to inject discrete tokens as prior guidance for continuous AR modeling. MixAR is a factorized formulation that leverages discrete tokens as prior guidance for continuous autoregressive prediction. We investigate several discrete-continuous mixture strategies, including self-attention (DC-SA), cross-attention (DC-CA), and a simple approach (DC-Mix) that replaces homogeneous mask tokens with informative discrete counterparts. Moreover, to bridge the gap between ground-truth training tokens and inference tokens produced by the pre-trained AR model, we propose Training-Inference Mixture (TI-Mix) to achieve consistent training and generation distributions. In our experiments, we demonstrate a favorable balance of the DC-Mix strategy between computational efficiency and generation fidelity, and consistent improvement of TI-Mix.
Abstract:Urban surface water flooding, triggered by intense rainfall overwhelming drainage systems, is increasingly frequent and widespread. While flood prediction and monitoring in high spatial-temporal resolution are desired, practical constraints in time, budget, and technology hinder its full implementation. How to monitor urban drainage networks and predict flow conditions under constrained resource is a major challenge. This study presents a data-driven sparse sensing (DSS) framework, integrated with EPA-SWMM, to optimize sensor placement and reconstruct peak flowrates in a stormwater system, using the Woodland Avenue catchment in Duluth, Minnesota, as a case study. We utilized a SWMM model to generate a training dataset of peak flowrate profiles across the stormwater network. Furthermore, we applied DSS - leveraging singular value decomposition for dimensionality reduction and QR factorization for sensor allocation - to identify the optimal monitoring nodes based on the simulated training dataset. We then validated the representativeness of these identified monitoring nodes by comparing the DSS-reconstructed peak flowrate profiles with those obtained from SWMM. Three optimally placed sensors among 77 nodes achieved satisfactory reconstruction performance with Nash-Sutcliffe Efficiency (NSE) values of 0.92-0.95 (25th to 75th percentiles). In addition, the model showed good robustness to uncertainty in measurements. Its robustness to sensor failures is location-dependent and improves with the number of sensors deployed. The framework balances computational efficiency and physical interpretability, enabling high-accuracy flow reconstruction with minimal sensors. This DSS framework can be further integrated with predictive models to realize flood early warning and real-time control under limited sensing and monitoring resource.
Abstract:Causal structure learning has long been the central task of inferring causal insights from data. Despite the abundance of real-world processes exhibiting higher-order mechanisms, however, an explicit treatment of interactions in causal discovery has received little attention. In this work, we focus on extending the causal additive model (CAM) to additive models with higher-order interactions. This second level of modularity we introduce to the structure learning problem is most easily represented by a directed acyclic hypergraph which extends the DAG. We introduce the necessary definitions and theoretical tools to handle the novel structure we introduce and then provide identifiability results for the hyper DAG, extending the typical Markov equivalence classes. We next provide insights into why learning the more complex hypergraph structure may actually lead to better empirical results. In particular, more restrictive assumptions like CAM correspond to easier-to-learn hyper DAGs and better finite sample complexity. We finally develop an extension of the greedy CAM algorithm which can handle the more complex hyper DAG search space and demonstrate its empirical usefulness in synthetic experiments.
Abstract:Recovering causal structure in the presence of latent variables is an important but challenging task. While many methods have been proposed to handle it, most of them require strict and/or untestable assumptions on the causal structure. In real-world scenarios, observed variables may be affected by multiple latent variables simultaneously, which, generally speaking, cannot be handled by these methods. In this paper, we consider the linear, non-Gaussian case, and make use of the joint higher-order cumulant matrix of the observed variables constructed in a specific way. We show that, surprisingly, causal asymmetry between two observed variables can be directly seen from the rank deficiency properties of such higher-order cumulant matrices, even in the presence of an arbitrary number of latent confounders. Identifiability results are established, and the corresponding identification methods do not even involve iterative procedures. Experimental results demonstrate the effectiveness and asymptotic correctness of our proposed method.
Abstract:Natural language has long enabled human cooperation, but its lossy, ambiguous, and indirect nature limits the potential of collective intelligence. While machines are not subject to these constraints, most LLM-based multi-agent systems still rely solely on natural language, exchanging tokens or their embeddings. To go beyond language, we introduce a new paradigm, thought communication, which enables agents to interact directly mind-to-mind, akin to telepathy. To uncover these latent thoughts in a principled way, we formalize the process as a general latent variable model, where agent states are generated by an unknown function of underlying thoughts. We prove that, in a nonparametric setting without auxiliary information, both shared and private latent thoughts between any pair of agents can be identified. Moreover, the global structure of thought sharing, including which agents share which thoughts and how these relationships are structured, can also be recovered with theoretical guarantees. Guided by the established theory, we develop a framework that extracts latent thoughts from all agents prior to communication and assigns each agent the relevant thoughts, along with their sharing patterns. This paradigm naturally extends beyond LLMs to all modalities, as most observational data arise from hidden generative processes. Experiments on both synthetic and real-world benchmarks validate the theory and demonstrate the collaborative advantages of thought communication. We hope this work illuminates the potential of leveraging the hidden world, as many challenges remain unsolvable through surface-level observation alone, regardless of compute or data scale.