Sherman
Abstract:The timely exchange of information among robots within a team is vital, but it can be constrained by limited wireless capacity. The inability to deliver information promptly can result in estimation errors that impact collaborative efforts among robots. In this paper, we propose a new metric termed Loss of Information Utility (LoIU) to quantify the freshness and utility of information critical for cooperation. The metric enables robots to prioritize information transmissions within bandwidth constraints. We also propose the estimation of LoIU using belief distributions and accordingly optimize both transmission schedule and resource allocation strategy for device-to-device transmissions to minimize the time-average LoIU within a robot team. A semi-decentralized Multi-Agent Deep Deterministic Policy Gradient framework is developed, where each robot functions as an actor responsible for scheduling transmissions among its collaborators while a central critic periodically evaluates and refines the actors in response to mobility and interference. Simulations validate the effectiveness of our approach, demonstrating an enhancement of information freshness and utility by 98%, compared to alternative methods.
Abstract:In this article, we introduce a novel low-altitude wireless network (LAWN), which is a reconfigurable, three-dimensional (3D) layered architecture. In particular, the LAWN integrates connectivity, sensing, control, and computing across aerial and terrestrial nodes that enable seamless operation in complex, dynamic, and mission-critical environments. In this article, we introduce a novel low-altitude wireless network (LAWN), which is a reconfigurable, three-dimensional (3D) layered architecture. Different from the conventional aerial communication systems, LAWN's distinctive feature is its tight integration of functional planes in which multiple functionalities continually reshape themselves to operate safely and efficiently in the low-altitude sky. With the LAWN, we discuss several enabling technologies, such as integrated sensing and communication (ISAC), semantic communication, and fully-actuated control systems. Finally, we identify potential applications and key cross-layer challenges. This article offers a comprehensive roadmap for future research and development in the low-altitude airspace.
Abstract:In next-generation wireless networks, supporting real-time applications such as augmented reality, autonomous driving, and immersive Metaverse services demands stringent constraints on bandwidth, latency, and reliability. Existing semantic communication (SemCom) approaches typically rely on static models, overlooking dynamic conditions and contextual cues vital for efficient transmission. To address these challenges, we propose CaSemCom, a context-aware SemCom framework that leverages a Large Language Model (LLM)-based gating mechanism and a Mixture of Experts (MoE) architecture to adaptively select and encode only high-impact semantic features across multiple data modalities. Our multimodal, multi-user case study demonstrates that CaSemCom significantly improves reconstructed image fidelity while reducing bandwidth usage, outperforming single-agent deep reinforcement learning (DRL) methods and traditional baselines in convergence speed, semantic accuracy, and retransmission overhead.
Abstract:This paper focuses on Zero-Trust Foundation Models (ZTFMs), a novel paradigm that embeds zero-trust security principles into the lifecycle of foundation models (FMs) for Internet of Things (IoT) systems. By integrating core tenets, such as continuous verification, least privilege access (LPA), data confidentiality, and behavioral analytics into the design, training, and deployment of FMs, ZTFMs can enable secure, privacy-preserving AI across distributed, heterogeneous, and potentially adversarial IoT environments. We present the first structured synthesis of ZTFMs, identifying their potential to transform conventional trust-based IoT architectures into resilient, self-defending ecosystems. Moreover, we propose a comprehensive technical framework, incorporating federated learning (FL), blockchain-based identity management, micro-segmentation, and trusted execution environments (TEEs) to support decentralized, verifiable intelligence at the network edge. In addition, we investigate emerging security threats unique to ZTFM-enabled systems and evaluate countermeasures, such as anomaly detection, adversarial training, and secure aggregation. Through this analysis, we highlight key open research challenges in terms of scalability, secure orchestration, interpretable threat attribution, and dynamic trust calibration. This survey lays a foundational roadmap for secure, intelligent, and trustworthy IoT infrastructures powered by FMs.
Abstract:Federated Learning (FL) is a distributed machine learning paradigm based on protecting data privacy of devices, which however, can still be broken by gradient leakage attack via parameter inversion techniques. Differential privacy (DP) technology reduces the risk of private data leakage by adding artificial noise to the gradients, but detrimental to the FL utility at the same time, especially in the scenario where the data is Non-Independent Identically Distributed (Non-IID). Based on the impact of heterogeneous data on aggregation performance, this paper proposes a Lightweight Adaptive Privacy Allocation (LAPA) strategy, which assigns personalized privacy budgets to devices in each aggregation round without transmitting any additional information beyond gradients, ensuring both privacy protection and aggregation efficiency. Furthermore, the Deep Deterministic Policy Gradient (DDPG) algorithm is employed to optimize the transmission power, in order to determine the optimal timing at which the adaptively attenuated artificial noise aligns with the communication noise, enabling an effective balance between DP and system utility. Finally, a reliable aggregation strategy is designed by integrating communication quality and data distribution characteristics, which improves aggregation performance while preserving privacy. Experimental results demonstrate that the personalized noise allocation and dynamic optimization strategy based on LAPA proposed in this paper enhances convergence performance while satisfying the privacy requirements of FL.
Abstract:This paper introduces a two-stage generative AI (GenAI) framework tailored for temporal spectrum cartography in low-altitude economy networks (LAENets). LAENets, characterized by diverse aerial devices such as UAVs, rely heavily on wireless communication technologies while facing challenges, including spectrum congestion and dynamic environmental interference. Traditional spectrum cartography methods have limitations in handling the temporal and spatial complexities inherent to these networks. Addressing these challenges, the proposed framework first employs a Reconstructive Masked Autoencoder (RecMAE) capable of accurately reconstructing spectrum maps from sparse and temporally varying sensor data using a novel dual-mask mechanism. This approach significantly enhances the precision of reconstructed radio frequency (RF) power maps. In the second stage, the Multi-agent Diffusion Policy (MADP) method integrates diffusion-based reinforcement learning to optimize the trajectories of dynamic UAV sensors. By leveraging temporal-attention encoding, this method effectively manages spatial exploration and exploitation to minimize cumulative reconstruction errors. Extensive numerical experiments validate that this integrated GenAI framework outperforms traditional interpolation methods and deep learning baselines by achieving 57.35% and 88.68% reconstruction error reduction, respectively. The proposed trajectory planner substantially improves spectrum map accuracy, reconstruction stability, and sensor deployment efficiency in dynamically evolving low-altitude environments.
Abstract:The aggregation efficiency and accuracy of wireless Federated Learning (FL) are significantly affected by resource constraints, especially in heterogeneous environments where devices exhibit distinct data distributions and communication capabilities. This paper proposes a clustering strategy that leverages prior knowledge similarity to group devices with similar data and communication characteristics, mitigating performance degradation from heterogeneity. On this basis, a novel Cluster- Aware Multi-round Update (CAMU) strategy is proposed, which treats clusters as the basic units and adjusts the local update frequency based on the clustered contribution threshold, effectively reducing update bias and enhancing aggregation accuracy. The theoretical convergence of the CAMU strategy is rigorously validated. Meanwhile, based on the convergence upper bound, the local update frequency and transmission power of each cluster are jointly optimized to achieve an optimal balance between computation and communication resources under constrained conditions, significantly improving the convergence efficiency of FL. Experimental results demonstrate that the proposed method effectively improves the model performance of FL in heterogeneous environments and achieves a better balance between communication cost and computational load under limited resources.
Abstract:Mixture of Experts (MoE) has emerged as a promising paradigm for scaling model capacity while preserving computational efficiency, particularly in large-scale machine learning architectures such as large language models (LLMs). Recent advances in MoE have facilitated its adoption in wireless networks to address the increasing complexity and heterogeneity of modern communication systems. This paper presents a comprehensive survey of the MoE framework in wireless networks, highlighting its potential in optimizing resource efficiency, improving scalability, and enhancing adaptability across diverse network tasks. We first introduce the fundamental concepts of MoE, including various gating mechanisms and the integration with generative AI (GenAI) and reinforcement learning (RL). Subsequently, we discuss the extensive applications of MoE across critical wireless communication scenarios, such as vehicular networks, unmanned aerial vehicles (UAVs), satellite communications, heterogeneous networks, integrated sensing and communication (ISAC), and mobile edge networks. Furthermore, key applications in channel prediction, physical layer signal processing, radio resource management, network optimization, and security are thoroughly examined. Additionally, we present a detailed overview of open-source datasets that are widely used in MoE-based models to support diverse machine learning tasks. Finally, this survey identifies crucial future research directions for MoE, emphasizing the importance of advanced training techniques, resource-aware gating strategies, and deeper integration with emerging 6G technologies.
Abstract:This paper explores the application of movable antenna (MA), a cutting-edge technology with the capability of altering antenna positions, in a symbiotic radio (SR) system enabled by reconfigurable intelligent surface (RIS). The goal is to fully exploit the capabilities of both MA and RIS, constructing a better transmission environment for the co-existing primary and secondary transmission systems. For both parasitic SR (PSR) and commensal SR (CSR) scenarios with the channel uncertainties experienced by all transmission links, we design a robust transmission scheme with the goal of maximizing the primary rate while ensuring the secondary transmission quality. To address the maximization problem with thorny non-convex characteristics, we propose an alternating optimization framework that utilizes the General S-Procedure, General Sign-Definiteness Principle, successive convex approximation (SCA), and simulated annealing (SA) improved particle swarm optimization (SA-PSO) algorithms. Numerical results validate that the CSR scenario significantly outperforms the PSR scenario in terms of primary rate, and also show that compared to the fixed-position antenna scheme, the proposed MA scheme can increase the primary rate by 1.62 bps/Hz and 2.37 bps/Hz for the PSR and CSR scenarios, respectively.
Abstract:Low-Altitude Economy Networks (LAENets) have emerged as significant enablers of social activities, offering low-altitude services such as the transportation of packages, groceries, and medical supplies. Unlike traditional terrestrial networks, LAENets are characterized by control mechanisms and ever-changing operational factors, which make them more complex and susceptible to vulnerabilities. As applications of LAENet continue to expand, robustness of these systems becomes crucial. In this paper, we investigate a novel application of Generative Artificial Intelligence (GenAI) to improve the robustness of LAENets. We conduct a systematic analysis of robustness requirements for LAENets, complemented by a comprehensive review of robust Quality of Service (QoS) metrics from the wireless physical layer perspective. We then investigate existing GenAI-enabled approaches for robustness enhancement. This leads to our proposal of a novel diffusion-based optimization framework with a Mixture of Expert (MoE)-transformer actor network. In the robust beamforming case study, the proposed framework demonstrates its effectiveness by optimizing beamforming under uncertainties, achieving a more than 44% increase in the worst-case achievable secrecy rate. These findings highlight the significant potential of GenAI in strengthening LAENet robustness.