Semantic communication (SemCom) holds promise for reducing network resource consumption while achieving the communications goal. However, the computational overheads in jointly training semantic encoders and decoders-and the subsequent deployment in network devices-are overlooked. Recent advances in Generative artificial intelligence (GAI) offer a potential solution. The robust learning abilities of GAI models indicate that semantic decoders can reconstruct source messages using a limited amount of semantic information, e.g., prompts, without joint training with the semantic encoder. A notable challenge, however, is the instability introduced by GAI's diverse generation ability. This instability, evident in outputs like text-generated images, limits the direct application of GAI in scenarios demanding accurate message recovery, such as face image transmission. To solve the above problems, this paper proposes a GAI-aided SemCom system with multi-model prompts for accurate content decoding. Moreover, in response to security concerns, we introduce the application of covert communications aided by a friendly jammer. The system jointly optimizes the diffusion step, jamming, and transmitting power with the aid of the generative diffusion models, enabling successful and secure transmission of the source messages.
With the significant advancements in artificial intelligence (AI) technologies and powerful computational capabilities, generative AI (GAI) has become a pivotal digital content generation technique for offering superior digital services. However, directing GAI towards desired outputs still suffer the inherent instability of the AI model. In this paper, we design a novel framework that utilizes wireless perception to guide GAI (WiPe-GAI) for providing digital content generation service, i.e., AI-generated content (AIGC), in resource-constrained mobile edge networks. Specifically, we first propose a new sequential multi-scale perception (SMSP) algorithm to predict user skeleton based on the channel state information (CSI) extracted from wireless signals. This prediction then guides GAI to provide users with AIGC, such as virtual character generation. To ensure the efficient operation of the proposed framework in resource constrained networks, we further design a pricing-based incentive mechanism and introduce a diffusion model based approach to generate an optimal pricing strategy for the service provisioning. The strategy maximizes the user's utility while enhancing the participation of the virtual service provider (VSP) in AIGC provision. The experimental results demonstrate the effectiveness of the designed framework in terms of skeleton prediction and optimal pricing strategy generation comparing with other existing solutions.
The popularity of Metaverse as an entertainment, social, and work platform has led to a great need for seamless avatar integration in the virtual world. In Metaverse, avatars must be updated and rendered to reflect users' behaviour. Achieving real-time synchronization between the virtual bilocation and the user is complex, placing high demands on the Metaverse Service Provider (MSP)'s rendering resource allocation scheme. To tackle this issue, we propose a semantic communication framework that leverages contest theory to model the interactions between users and MSPs and determine optimal resource allocation for each user. To reduce the consumption of network resources in wireless transmission, we use the semantic communication technique to reduce the amount of data to be transmitted. Under our simulation settings, the encoded semantic data only contains 51 bytes of skeleton coordinates instead of the image size of 8.243 megabytes. Moreover, we implement Deep Q-Network to optimize reward settings for maximum performance and efficient resource allocation. With the optimal reward setting, users are incentivized to select their respective suitable uploading frequency, reducing down-sampling loss due to rendering resource constraints by 66.076\% compared with the traditional average distribution method. The framework provides a novel solution to resource allocation for avatar association in VR environments, ensuring a smooth and immersive experience for all users.
Generative Diffusion Models (GDMs) have emerged as a transformative force in the realm of Generative Artificial Intelligence (GAI), demonstrating their versatility and efficacy across a variety of applications. The ability to model complex data distributions and generate high-quality samples has made GDMs particularly effective in tasks such as image generation and reinforcement learning. Furthermore, their iterative nature, which involves a series of noise addition and denoising steps, is a powerful and unique approach to learning and generating data. This paper serves as a comprehensive tutorial on applying GDMs in network optimization tasks. We delve into the strengths of GDMs, emphasizing their wide applicability across various domains, such as vision, text, and audio generation.We detail how GDMs can be effectively harnessed to solve complex optimization problems inherent in networks. The paper first provides a basic background of GDMs and their applications in network optimization. This is followed by a series of case studies, showcasing the integration of GDMs with Deep Reinforcement Learning (DRL), incentive mechanism design, Semantic Communications (SemCom), Internet of Vehicles (IoV) networks, etc. These case studies underscore the practicality and efficacy of GDMs in real-world scenarios, offering insights into network design. We conclude with a discussion on potential future directions for GDM research and applications, providing major insights into how they can continue to shape the future of network optimization.
Artificial Intelligence Generated Content (AIGC) Services have significant potential in digital content creation. The distinctive abilities of AIGC, such as content generation based on minimal input, hold huge potential, especially when integrating with semantic communication (SemCom). In this paper, a novel comprehensive conceptual model for the integration of AIGC and SemCom is developed. Particularly, a content generation level is introduced on top of the semantic level that provides a clear outline of how AIGC and SemCom interact with each other to produce meaningful and effective content. Moreover, a novel framework that employs AIGC technology is proposed as an encoder and decoder for semantic information, considering the joint optimization of semantic extraction and evaluation metrics tailored to AIGC services. The framework can adapt to different types of content generated, the required quality, and the semantic information utilized. By employing a Deep Q Network (DQN), a case study is presented that provides useful insights into the feasibility of the optimization problem and its convergence characteristics.
Given the revolutionary role of metaverses, healthcare metaverses are emerging as a transformative force, creating intelligent healthcare systems that offer immersive and personalized services. The healthcare metaverses allow for effective decision-making and data analytics for users. However, there still exist critical challenges in building healthcare metaverses, such as the risk of sensitive data leakage and issues with sensing data security and freshness, as well as concerns around incentivizing data sharing. In this paper, we first design a user-centric privacy-preserving framework based on decentralized Federated Learning (FL) for healthcare metaverses. To further improve the privacy protection of healthcare metaverses, a cross-chain empowered FL framework is utilized to enhance sensing data security. This framework utilizes a hierarchical cross-chain architecture with a main chain and multiple subchains to perform decentralized, privacy-preserving, and secure data training in both virtual and physical spaces. Moreover, we utilize Age of Information (AoI) as an effective data-freshness metric and propose an AoI-based contract theory model under Prospect Theory (PT) to motivate sensing data sharing in a user-centric manner. This model exploits PT to better capture the subjective utility of the service provider. Finally, our numerical results demonstrate the effectiveness of the proposed schemes for healthcare metaverses.
Avatars, as promising digital assistants in Vehicular Metaverses, can enable drivers and passengers to immerse in 3D virtual spaces, serving as a practical emerging example of Artificial Intelligence of Things (AIoT) in intelligent vehicular environments. The immersive experience is achieved through seamless human-avatar interaction, e.g., augmented reality navigation, which requires intensive resources that are inefficient and impractical to process on intelligent vehicles locally. Fortunately, offloading avatar tasks to RoadSide Units (RSUs) or cloud servers for remote execution can effectively reduce resource consumption. However, the high mobility of vehicles, the dynamic workload of RSUs, and the heterogeneity of RSUs pose novel challenges to making avatar migration decisions. To address these challenges, in this paper, we propose a dynamic migration framework for avatar tasks based on real-time trajectory prediction and Multi-Agent Deep Reinforcement Learning (MADRL). Specifically, we propose a model to predict the future trajectories of intelligent vehicles based on their historical data, indicating the future workloads of RSUs.Based on the expected workloads of RSUs, we formulate the avatar task migration problem as a long-term mixed integer programming problem. To tackle this problem efficiently, the problem is transformed into a Partially Observable Markov Decision Process (POMDP) and solved by multiple DRL agents with hybrid continuous and discrete actions in decentralized. Numerical results demonstrate that our proposed algorithm can effectively reduce the latency of executing avatar tasks by around 25% without prediction and 30% with prediction and enhance user immersive experiences in the AIoT-enabled Vehicular Metaverse (AeVeM).
Semantic communication (SemCom) has emerged as a promising architecture in the realm of intelligent communication paradigms. SemCom involves extracting and compressing the core information at the transmitter while enabling the receiver to interpret it based on established knowledge bases (KBs). This approach enhances communication efficiency greatly. However, the open nature of wireless transmission and the presence of homogeneous KBs among subscribers of identical data type pose a risk of privacy leakage in SemCom. To address this challenge, we propose to leverage the simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) to achieve privacy protection in a SemCom system. In this system, the STAR-RIS is utilized to enhance the signal transmission of the SemCom between a base station and a destination user, as well as to covert the signal to interference specifically for the eavesdropper (Eve). Simulation results demonstrate that our generated task-level disturbance outperforms other benchmarks in protecting SemCom privacy, as evidenced by the significantly lower task success rate achieved by Eve.
For vehicular metaverses, one of the ultimate user-centric goals is to optimize the immersive experience and Quality of Service (QoS) for users on board. Semantic Communication (SemCom) has been introduced as a revolutionary paradigm that significantly eases communication resource pressure for vehicular metaverse applications to achieve this goal. SemCom enables high-quality and ultra-efficient vehicular communication, even with explosively increasing data traffic among vehicles. In this article, we propose a hierarchical SemCom-enabled vehicular metaverses framework consisting of the global metaverse, local metaverses, SemCom module, and resource pool. The global and local metaverses are brand-new concepts from the metaverse's distribution standpoint. Considering the QoS of users, this article explores the potential security vulnerabilities of the proposed framework. To that purpose, this study highlights a specific security risk to the framework's SemCom module and offers a viable defense solution, so encouraging community researchers to focus more on vehicular metaverse security. Finally, we provide an overview of the open issues of secure SemCom in the vehicular metaverses, notably pointing out potential future research directions.
Visual surveillance technology is an indispensable functional component of advanced traffic management systems. It has been applied to perform traffic supervision tasks, such as object detection, tracking and recognition. However, adverse weather conditions, e.g., fog, haze and mist, pose severe challenges for video-based transportation surveillance. To eliminate the influences of adverse weather conditions, we propose a dual attention and dual frequency-guided dehazing network (termed DADFNet) for real-time visibility enhancement. It consists of a dual attention module (DAM) and a high-low frequency-guided sub-net (HLFN) to jointly consider the attention and frequency mapping to guide haze-free scene reconstruction. Extensive experiments on both synthetic and real-world images demonstrate the superiority of DADFNet over state-of-the-art methods in terms of visibility enhancement and improvement in detection accuracy. Furthermore, DADFNet only takes $6.3$ ms to process a 1,920 * 1,080 image on the 2080 Ti GPU, making it highly efficient for deployment in intelligent transportation systems.