Sherman
Abstract:Mixture of Experts (MoE) has emerged as a promising paradigm for scaling model capacity while preserving computational efficiency, particularly in large-scale machine learning architectures such as large language models (LLMs). Recent advances in MoE have facilitated its adoption in wireless networks to address the increasing complexity and heterogeneity of modern communication systems. This paper presents a comprehensive survey of the MoE framework in wireless networks, highlighting its potential in optimizing resource efficiency, improving scalability, and enhancing adaptability across diverse network tasks. We first introduce the fundamental concepts of MoE, including various gating mechanisms and the integration with generative AI (GenAI) and reinforcement learning (RL). Subsequently, we discuss the extensive applications of MoE across critical wireless communication scenarios, such as vehicular networks, unmanned aerial vehicles (UAVs), satellite communications, heterogeneous networks, integrated sensing and communication (ISAC), and mobile edge networks. Furthermore, key applications in channel prediction, physical layer signal processing, radio resource management, network optimization, and security are thoroughly examined. Additionally, we present a detailed overview of open-source datasets that are widely used in MoE-based models to support diverse machine learning tasks. Finally, this survey identifies crucial future research directions for MoE, emphasizing the importance of advanced training techniques, resource-aware gating strategies, and deeper integration with emerging 6G technologies.
Abstract:An integration of satellites and terrestrial networks is crucial for enhancing performance of next generation communication systems. However, the networks are hindered by the long-distance path loss and security risks in dense urban environments. In this work, we propose a satellite-terrestrial covert communication system assisted by the aerial active simultaneous transmitting and reflecting reconfigurable intelligent surface (AASTAR-RIS) to improve the channel capacity while ensuring the transmission covertness. Specifically, we first derive the minimal detection error probability (DEP) under the worst condition that the Warden has perfect channel state information (CSI). Then, we formulate an AASTAR-RIS-assisted satellite-terrestrial covert communication optimization problem (ASCCOP) to maximize the sum of the fair channel capacity for all ground users while meeting the strict covert constraint, by jointly optimizing the trajectory and active beamforming of the AASTAR-RIS. Due to the challenges posed by the complex and high-dimensional state-action spaces as well as the need for efficient exploration in dynamic environments, we propose a generative deterministic policy gradient (GDPG) algorithm, which is a generative deep reinforcement learning (DRL) method to solve the ASCCOP. Concretely, the generative diffusion model (GDM) is utilized as the policy representation of the algorithm to enhance the exploration process by generating diverse and high-quality samples through a series of denoising steps. Moreover, we incorporate an action gradient mechanism to accomplish the policy improvement of the algorithm, which refines the better state-action pairs through the gradient ascent. Simulation results demonstrate that the proposed approach significantly outperforms important benchmarks.
Abstract:Artificial Intelligence (AI)-driven convolutional neural networks enhance rescue, inspection, and surveillance tasks performed by low-altitude uncrewed aerial vehicles (UAVs) and ground computing nodes (GCNs) in unknown environments. However, their high computational demands often exceed a single UAV's capacity, leading to system instability, further exacerbated by the limited and dynamic resources of GCNs. To address these challenges, this paper proposes a novel cooperation framework involving UAVs, ground-embedded robots (GERs), and high-altitude platforms (HAPs), which enable resource pooling through UAV-to-GER (U2G) and UAV-to-HAP (U2H) communications to provide computing services for UAV offloaded tasks. Specifically, we formulate the multi-objective optimization problem of task assignment and exploration optimization in UAVs as a dynamic long-term optimization problem. Our objective is to minimize task completion time and energy consumption while ensuring system stability over time. To achieve this, we first employ the Lyapunov optimization technique to transform the original problem, with stability constraints, into a per-slot deterministic problem. We then propose an algorithm named HG-MADDPG, which combines the Hungarian algorithm with a generative diffusion model (GDM)-based multi-agent deep deterministic policy gradient (MADDPG) approach. We first introduce the Hungarian algorithm as a method for exploration area selection, enhancing UAV efficiency in interacting with the environment. We then innovatively integrate the GDM and multi-agent deep deterministic policy gradient (MADDPG) to optimize task assignment decisions, such as task offloading and resource allocation. Simulation results demonstrate the effectiveness of the proposed approach, with significant improvements in task offloading efficiency, latency reduction, and system stability compared to baseline methods.
Abstract:Current methods for pathology image segmentation typically treat 2D slices independently, ignoring valuable cross-slice information. We present PathSeqSAM, a novel approach that treats 2D pathology slices as sequential video frames using SAM2's memory mechanisms. Our method introduces a distance-aware attention mechanism that accounts for variable physical distances between slices and employs LoRA for domain adaptation. Evaluated on the KPI Challenge 2024 dataset for glomeruli segmentation, PathSeqSAM demonstrates improved segmentation quality, particularly in challenging cases that benefit from cross-slice context. We have publicly released our code at https://github.com/JackyyyWang/PathSeqSAM.
Abstract:Chronic kidney disease (CKD) is a growing global health concern, necessitating precise and efficient image analysis to aid diagnosis and treatment planning. Automated segmentation of kidney pathology images plays a central role in facilitating clinical workflows, yet conventional segmentation models often require delicate threshold tuning. This paper proposes a novel \textit{Cascaded Threshold-Integrated U-Net (CTI-Unet)} to overcome the limitations of single-threshold segmentation. By sequentially integrating multiple thresholded outputs, our approach can reconcile noise suppression with the preservation of finer structural details. Experiments on the challenging KPIs2024 dataset demonstrate that CTI-Unet outperforms state-of-the-art architectures such as nnU-Net, Swin-Unet, and CE-Net, offering a robust and flexible framework for kidney pathology image segmentation.
Abstract:The rapid expansion of data from diverse sources has made anomaly detection (AD) increasingly essential for identifying unexpected observations that may signal system failures, security breaches, or fraud. As datasets become more complex and high-dimensional, traditional detection methods struggle to effectively capture intricate patterns. Advances in deep learning have made AD methods more powerful and adaptable, improving their ability to handle high-dimensional and unstructured data. This survey provides a comprehensive review of over 180 recent studies, focusing on deep learning-based AD techniques. We categorize and analyze these methods into reconstruction-based and prediction-based approaches, highlighting their effectiveness in modeling complex data distributions. Additionally, we explore the integration of traditional and deep learning methods, highlighting how hybrid approaches combine the interpretability of traditional techniques with the flexibility of deep learning to enhance detection accuracy and model transparency. Finally, we identify open issues and propose future research directions to advance the field of AD. This review bridges gaps in existing literature and serves as a valuable resource for researchers and practitioners seeking to enhance AD techniques using deep learning.
Abstract:The trackers based on lightweight neural networks have achieved great success in the field of aerial remote sensing, most of which aggregate multi-stage deep features to lift the tracking quality. However, existing algorithms usually only generate single-stage fusion features for state decision, which ignore that diverse kinds of features are required for identifying and locating the object, limiting the robustness and precision of tracking. In this paper, we propose a novel target-aware Bidirectional Fusion transformer (BFTrans) for UAV tracking. Specifically, we first present a two-stream fusion network based on linear self and cross attentions, which can combine the shallow and the deep features from both forward and backward directions, providing the adjusted local details for location and global semantics for recognition. Besides, a target-aware positional encoding strategy is designed for the above fusion model, which is helpful to perceive the object-related attributes during the fusion phase. Finally, the proposed method is evaluated on several popular UAV benchmarks, including UAV-123, UAV20L and UAVTrack112. Massive experimental results demonstrate that our approach can exceed other state-of-the-art trackers and run with an average speed of 30.5 FPS on embedded platform, which is appropriate for practical drone deployments.
Abstract:Generative AI (GenAI) is driving the intelligence of wireless communications. Due to data limitations, random generation, and dynamic environments, GenAI may generate channel information or optimization strategies that violate physical laws or deviate from actual real-world requirements. We refer to this phenomenon as wireless hallucination, which results in invalid channel information, spectrum wastage, and low communication reliability but remains underexplored. To address this gap, this article provides a comprehensive concept of wireless hallucinations in GenAI-driven communications, focusing on hallucination mitigation. Specifically, we first introduce the fundamental, analyze its causes based on the GenAI workflow, and propose mitigation solutions at the data, model, and post-generation levels. Then, we systematically examines representative hallucination scenarios in GenAI-enabled communications and their corresponding solutions. Finally, we propose a novel integrated mitigation solution for GenAI-based channel estimation. At the data level, we establish a channel estimation hallucination dataset and employ generative adversarial networks (GANs)-based data augmentation. Additionally, we incorporate attention mechanisms and large language models (LLMs) to enhance both training and inference performance. Experimental results demonstrate that the proposed hybrid solutions reduce the normalized mean square error (NMSE) by 0.19, effectively reducing wireless hallucinations.
Abstract:Low-Altitude Economy Networks (LAENets) have emerged as significant enablers of social activities, offering low-altitude services such as the transportation of packages, groceries, and medical supplies. Unlike traditional terrestrial networks, LAENets are characterized by control mechanisms and ever-changing operational factors, which make them more complex and susceptible to vulnerabilities. As applications of LAENet continue to expand, robustness of these systems becomes crucial. In this paper, we investigate a novel application of Generative Artificial Intelligence (GenAI) to improve the robustness of LAENets. We conduct a systematic analysis of robustness requirements for LAENets, complemented by a comprehensive review of robust Quality of Service (QoS) metrics from the wireless physical layer perspective. We then investigate existing GenAI-enabled approaches for robustness enhancement. This leads to our proposal of a novel diffusion-based optimization framework with a Mixture of Expert (MoE)-transformer actor network. In the robust beamforming case study, the proposed framework demonstrates its effectiveness by optimizing beamforming under uncertainties, achieving a more than 44% increase in the worst-case achievable secrecy rate. These findings highlight the significant potential of GenAI in strengthening LAENet robustness.
Abstract:Integrated sensing and communication (ISAC) uses the same software and hardware resources to achieve both communication and sensing functionalities. Thus, it stands as one of the core technologies of 6G and has garnered significant attention in recent years. In ISAC systems, a variety of machine learning models are trained to analyze and identify signal patterns, thereby ensuring reliable sensing and communications. However, considering factors such as communication rates, costs, and privacy, collecting sufficient training data from various ISAC scenarios for these models is impractical. Hence, this paper introduces a generative AI (GenAI) enabled robust data augmentation scheme. The scheme first employs a conditioned diffusion model trained on a limited amount of collected CSI data to generate new samples, thereby expanding the sample quantity. Building on this, the scheme further utilizes another diffusion model to enhance the sample quality, thereby facilitating the data augmentation in scenarios where the original sensing data is insufficient and unevenly distributed. Moreover, we propose a novel algorithm to estimate the acceleration and jerk of signal propagation path length changes from CSI. We then use the proposed scheme to enhance the estimated parameters and detect the number of targets based on the enhanced data. The evaluation reveals that our scheme improves the detection performance by up to 70%, demonstrating reliability and robustness, which supports the deployment and practical use of the ISAC network.