Sherman
Abstract:In this letter, we present a diffusion model method for signal detection in near-field communication with unknown noise characteristics. We consider an uplink transmission of a near-filed MIMO communication system consisting of multiple mobile terminals and one base station with multiple antennas. Then, we proposed a Maximum Likelihood Estimation Diffusion Detector (MLEDD) aiming at learning the distribution of unknown noise. To this end, we define an error function via Bayes' theorem to detect the source signal. Moreover, we present an implementation of the proposed framework. The performance of the proposed method in terms of bit error rate shows that it outperforms the MLE detector, Detection Network (DetNet), and Maximum Normalizing Flow Estimate method (MANFE) across different signal-to-noise ratios and noise distributions. Especially when the noise distribution is intractable, diffusion, as a state-of-the-art probability model, has the best distribution learning ability compared to other models. These results affirm that this framework can effectively detect signals in near-field scenarios.
Abstract:Integrated sensing and communications (ISAC) is expected to be a key technology for 6G, and channel state information (CSI) based sensing is a key component of ISAC. However, current research on ISAC focuses mainly on improving sensing performance, overlooking security issues, particularly the unauthorized sensing of users. In this paper, we propose a secure sensing system (DFSS) based on two distinct diffusion models. Specifically, we first propose a discrete conditional diffusion model to generate graphs with nodes and edges, guiding the ISAC system to appropriately activate wireless links and nodes, which ensures the sensing performance while minimizing the operation cost. Using the activated links and nodes, DFSS then employs the continuous conditional diffusion model to generate safeguarding signals, which are next modulated onto the pilot at the transmitter to mask fluctuations caused by user activities. As such, only ISAC devices authorized with the safeguarding signals can extract the true CSI for sensing, while unauthorized devices are unable to achieve the same sensing. Experiment results demonstrate that DFSS can reduce the activity recognition accuracy of the unauthorized devices by approximately 70%, effectively shield the user from the unauthorized surveillance.
Abstract:Internet of Things (IoT) devices are typically powered by small-sized batteries with limited energy storage capacity, requiring regular replacement or recharging. To reduce costs and maintain connectivity in IoT networks, energy harvesting technologies are regarded as a promising solution. Notably, due to its robust analytical and generative capabilities, generative artificial intelligence (GenAI) has demonstrated significant potential in optimizing energy harvesting networks. Therefore, we discuss key applications of GenAI in improving energy harvesting wireless networks for IoT in this article. Specifically, we first review the key technologies of GenAI and the architecture of energy harvesting wireless networks. Then, we show how GenAI can address different problems to improve the performance of the energy harvesting wireless networks. Subsequently, we present a case study of unmanned aerial vehicle (UAV)-enabled data collection and energy transfer. The case study shows distinctively the necessity of energy harvesting technology and verify the effectiveness of GenAI-based methods. Finally, we discuss some important open directions.
Abstract:Placenta volume measured from 3D ultrasound (3DUS) images is an important tool for tracking the growth trajectory and is associated with pregnancy outcomes. Manual segmentation is the gold standard, but it is time-consuming and subjective. Although fully automated deep learning algorithms perform well, they do not always yield high-quality results for each case. Interactive segmentation models could address this issue. However, there is limited work on interactive segmentation models for the placenta. Despite their segmentation accuracy, these methods may not be feasible for clinical use as they require relatively large computational power which may be especially prohibitive in low-resource environments, or on mobile devices. In this paper, we propose a lightweight interactive segmentation model aiming for clinical use to interactively segment the placenta from 3DUS images in real-time. The proposed model adopts the segmentation from our fully automated model for initialization and is designed in a human-in-the-loop manner to achieve iterative improvements. The Dice score and normalized surface Dice are used as evaluation metrics. The results show that our model can achieve superior performance in segmentation compared to state-of-the-art models while using significantly fewer parameters. Additionally, the proposed model is much faster for inference and robust to poor initial masks. The code is available at https://github.com/MedICL-VU/PRISM-placenta.
Abstract:Personalized federated learning (PFL) for surgical instrument segmentation (SIS) is a promising approach. It enables multiple clinical sites to collaboratively train a series of models in privacy, with each model tailored to the individual distribution of each site. Existing PFL methods rarely consider the personalization of multi-headed self-attention, and do not account for appearance diversity and instrument shape similarity, both inherent in surgical scenes. We thus propose PFedSIS, a novel PFL method with visual trait priors for SIS, incorporating global-personalized disentanglement (GPD), appearance-regulation personalized enhancement (APE), and shape-similarity global enhancement (SGE), to boost SIS performance in each site. GPD represents the first attempt at head-wise assignment for multi-headed self-attention personalization. To preserve the unique appearance representation of each site and gradually leverage the inter-site difference, APE introduces appearance regulation and provides customized layer-wise aggregation solutions via hypernetworks for each site's personalized parameters. The mutual shape information of instruments is maintained and shared via SGE, which enhances the cross-style shape consistency on the image level and computes the shape-similarity contribution of each site on the prediction level for updating the global parameters. PFedSIS outperforms state-of-the-art methods with +1.51% Dice, +2.11% IoU, -2.79 ASSD, -15.55 HD95 performance gains. The corresponding code and models will be released at https://github.com/wzjialang/PFedSIS.
Abstract:We propose a novel framework for retinal feature point alignment, designed for learning cross-modality features to enhance matching and registration across multi-modality retinal images. Our model draws on the success of previous learning-based feature detection and description methods. To better leverage unlabeled data and constrain the model to reproduce relevant keypoints, we integrate a keypoint-based segmentation task. It is trained in a self-supervised manner by enforcing segmentation consistency between different augmentations of the same image. By incorporating a keypoint augmented self-supervised layer, we achieve robust feature extraction across modalities. Extensive evaluation on two public datasets and one in-house dataset demonstrates significant improvements in performance for modality-agnostic retinal feature alignment. Our code and model weights are publicly available at \url{https://github.com/MedICL-VU/RetinaIPA}.
Abstract:Due to flexibility and low-cost, unmanned aerial vehicles (UAVs) are increasingly crucial for enhancing coverage and functionality of wireless networks. However, incorporating UAVs into next-generation wireless communication systems poses significant challenges, particularly in sustaining high-rate and long-range secure communications against eavesdropping attacks. In this work, we consider a UAV swarm-enabled secure surveillance network system, where a UAV swarm forms a virtual antenna array to transmit sensitive surveillance data to a remote base station (RBS) via collaborative beamforming (CB) so as to resist mobile eavesdroppers. Specifically, we formulate an aerial secure communication and energy efficiency multi-objective optimization problem (ASCEE-MOP) to maximize the secrecy rate of the system and to minimize the flight energy consumption of the UAV swarm. To address the non-convex, NP-hard and dynamic ASCEE-MOP, we propose a generative diffusion model-enabled twin delayed deep deterministic policy gradient (GDMTD3) method. Specifically, GDMTD3 leverages an innovative application of diffusion models to determine optimal excitation current weights and position decisions of UAVs. The diffusion models can better capture the complex dynamics and the trade-off of the ASCEE-MOP, thereby yielding promising solutions. Simulation results highlight the superior performance of the proposed approach compared with traditional deployment strategies and some other deep reinforcement learning (DRL) benchmarks. Moreover, performance analysis under various parameter settings of GDMTD3 and different numbers of UAVs verifies the robustness of the proposed approach.
Abstract:Placenta volume measurement from 3D ultrasound images is critical for predicting pregnancy outcomes, and manual annotation is the gold standard. However, such manual annotation is expensive and time-consuming. Automated segmentation algorithms can often successfully segment the placenta, but these methods may not consistently produce robust segmentations suitable for practical use. Recently, inspired by the Segment Anything Model (SAM), deep learning-based interactive segmentation models have been widely applied in the medical imaging domain. These models produce a segmentation from visual prompts provided to indicate the target region, which may offer a feasible solution for practical use. However, none of these models are specifically designed for interactively segmenting 3D ultrasound images, which remain challenging due to the inherent noise of this modality. In this paper, we evaluate publicly available state-of-the-art 3D interactive segmentation models in contrast to a human-in-the-loop approach for the placenta segmentation task. The Dice score, normalized surface Dice, averaged symmetric surface distance, and 95-percent Hausdorff distance are used as evaluation metrics. We consider a Dice score of 0.95 a successful segmentation. Our results indicate that the human-in-the-loop segmentation model reaches this standard. Moreover, we assess the efficiency of the human-in-the-loop model as a function of the amount of prompts. Our results demonstrate that the human-in-the-loop model is both effective and efficient for interactive placenta segmentation. The code is available at \url{https://github.com/MedICL-VU/PRISM-placenta}.
Abstract:Fluorescence labeling is the standard approach to reveal cellular structures and other subcellular constituents for microscopy images. However, this invasive procedure may perturb or even kill the cells and the procedure itself is highly time-consuming and complex. Recently, in silico labeling has emerged as a promising alternative, aiming to use machine learning models to directly predict the fluorescently labeled images from label-free microscopy. In this paper, we propose a deep learning-based in silico labeling method for the Light My Cells challenge. Built upon pix2pix, our proposed method can be trained using the partially labeled datasets with an adaptive loss. Moreover, we explore the effectiveness of several training strategies to handle different input modalities, such as training them together or separately. The results show that our method achieves promising performance for in silico labeling. Our code is available at https://github.com/MedICL-VU/LightMyCells.
Abstract:Integrated Sensing and Communications (ISAC) is one of the core technologies of 6G, which combines sensing and communication functions into a single system. However, limited computing and storage resources make it impractical to combine multiple sensing models into a single device, constraining the system's function and performance. Therefore, this article proposes enhancing ISAC with the mixture of experts (MoE) architecture. Rigorously, we first investigate ISAC and MoE, including their concepts, advantages, and applications. Then, we explore how MoE can enhance ISAC from the perspectives of signal processing and network optimization. Building on this, we propose an MoE based ISAC framework, which uses a gating network to selectively activate multiple experts in handling sensing tasks under given communication conditions, thereby improving the overall performance. The case study demonstrates that the proposed framework can effectively increase the accuracy and robustness in detecting targets by using wireless communication signal, providing strong support for the practical deployment and applications of the ISAC system.