Ohio State University, USA
Abstract:Generative joint source-channel coding (GJSCC) has emerged as a new Deep JSCC paradigm for achieving high-fidelity and robust image transmission under extreme wireless channel conditions, such as ultra-low bandwidth and low signal-to-noise ratio. Recent studies commonly adopt diffusion models as generative decoders, but they frequently produce visually realistic results with limited semantic consistency. This limitation stems from a fundamental mismatch between reconstruction-oriented JSCC encoders and generative decoders, as the former lack explicit semantic discriminability and fail to provide reliable conditional cues. In this paper, we propose DiT-JSCC, a novel GJSCC backbone that can jointly learn a semantics-prioritized representation encoder and a diffusion transformer (DiT) based generative decoder, our open-source project aims to promote the future research in GJSCC. Specifically, we design a semantics-detail dual-branch encoder that aligns naturally with a coarse-to-fine conditional DiT decoder, prioritizing semantic consistency under extreme channel conditions. Moreover, a training-free adaptive bandwidth allocation strategy inspired by Kolmogorov complexity is introduced to further improve the transmission efficiency, thereby indeed redefining the notion of information value in the era of generative decoding. Extensive experiments demonstrate that DiT-JSCC consistently outperforms existing JSCC methods in both semantic consistency and visual quality, particularly in extreme regimes.
Abstract:Agentic AI networking (AgentNet) is a novel AI-native networking paradigm in which a large number of specialized AI agents collaborate to perform autonomous decision-making, dynamic environmental adaptation, and complex missions. It has the potential to facilitate real-time network management and optimization functions, including self-configuration, self-optimization, and self-adaptation across diverse and complex environments. This paper proposes SANet, a novel semantic-aware AgentNet architecture for wireless networks that can infer the semantic goal of the user and automatically assign agents associated with different layers of the network to fulfill the inferred goal. Motivated by the fact that AgentNet is a decentralized framework in which collaborating agents may generally have different and even conflicting objectives, we formulate the decentralized optimization of SANet as a multi-agent multi-objective problem, and focus on finding the Pareto-optimal solution for agents with distinct and potentially conflicting objectives. We propose three novel metrics for evaluating SANet. Furthermore, we develop a model partition and sharing (MoPS) framework in which large models, e.g., deep learning models, of different agents can be partitioned into shared and agent-specific parts that are jointly constructed and deployed according to agents' local computational resources. Two decentralized optimization algorithms are proposed. We derive theoretical bounds and prove that there exists a three-way tradeoff among optimization, generalization, and conflicting errors. We develop an open-source RAN and core network-based hardware prototype that implements agents to interact with three different layers of the network. Experimental results show that the proposed framework achieved performance gains of up to 14.61% while requiring only 44.37% of FLOPs required by state-of-the-art algorithms.
Abstract:Radio Access Network (RAN) is a bridge between user devices and the core network in mobile communication systems, responsible for the transmission and reception of wireless signals and air interface management. In recent years, Semantic Communication (SemCom) has represented a transformative communication paradigm that prioritizes meaning-level transmission over conventional bit-level delivery, thus providing improved spectrum efficiency, anti-interference ability in complex environments, flexible resource allocation, and enhanced user experience for RAN. However, there is still a lack of comprehensive reviews on the integration of SemCom into RAN. Motivated by this, we systematically explore recent advancements in Semantic RAN (SemRAN). We begin by introducing the fundamentals of RAN and SemCom, identifying the limitations of conventional RAN, and outlining the overall architecture of SemRAN. Subsequently, we review representative techniques of SemRAN across physical layer, data link layer, network layer, and security plane. Furthermore, we envision future services and applications enabled by SemRAN, alongside its current standardization progress. Finally, we conclude by identifying critical research challenges and outlining forward-looking directions to guide subsequent investigations in this burgeoning field.
Abstract:Real-world agentic tasks, unlike synchronous Markov Decision Processes (MDPs), often involve non-blocking actions with variable latencies, creating a fundamental \textit{Temporal Gap} between action initiation and completion. Existing environment-side solutions, such as blocking wrappers or frequent polling, either limit scalability or dilute the agent's context window with redundant observations. In this work, we propose an \textbf{Agent-side Approach} that empowers Large Language Models (LLMs) to actively align their \textit{Cognitive Timeline} with the physical world. By extending the Code-as-Action paradigm to the temporal domain, agents utilize semantic priors and In-Context Learning (ICL) to predict precise waiting durations (\texttt{time.sleep(t)}), effectively synchronizing with asynchronous environment without exhaustive checking. Experiments in a simulated Kubernetes cluster demonstrate that agents can precisely calibrate their internal clocks to minimize both query overhead and execution latency, validating that temporal awareness is a learnable capability essential for autonomous evolution in open-ended environments.




Abstract:Integrated sensing and communication (ISAC) has emerged as a key development direction in the sixth-generation (6G) era, which provides essential support for the collaborative sensing and communication of future intelligent networks. However, as wireless environments become increasingly dynamic and complex, ISAC systems require more intelligent processing and more autonomous operation to maintain efficiency and adaptability. Meanwhile, agentic artificial intelligence (AI) offers a feasible solution to address these challenges by enabling continuous perception-reasoning-action loops in dynamic environments to support intelligent, autonomous, and efficient operation for ISAC systems. As such, we delve into the application value and prospects of agentic AI in ISAC systems in this work. Firstly, we provide a comprehensive review of agentic AI and ISAC systems to demonstrate their key characteristics. Secondly, we show several common optimization approaches for ISAC systems and highlight the significant advantages of generative artificial intelligence (GenAI)-based agentic AI. Thirdly, we propose a novel agentic ISAC framework and prensent a case study to verify its superiority in optimizing ISAC performance. Finally, we clarify future research directions for agentic AI-based ISAC systems.




Abstract:We present ClinicalTrialsHub, an interactive search-focused platform that consolidates all data from ClinicalTrials.gov and augments it by automatically extracting and structuring trial-relevant information from PubMed research articles. Our system effectively increases access to structured clinical trial data by 83.8% compared to relying on ClinicalTrials.gov alone, with potential to make access easier for patients, clinicians, researchers, and policymakers, advancing evidence-based medicine. ClinicalTrialsHub uses large language models such as GPT-5.1 and Gemini-3-Pro to enhance accessibility. The platform automatically parses full-text research articles to extract structured trial information, translates user queries into structured database searches, and provides an attributed question-answering system that generates evidence-grounded answers linked to specific source sentences. We demonstrate its utility through a user study involving clinicians, clinical researchers, and PhD students of pharmaceutical sciences and nursing, and a systematic automatic evaluation of its information extraction and question answering capabilities.

Abstract:Medical Large Language Models (LLMs) are increasingly deployed for clinical decision support across diverse specialties, yet systematic evaluation of their robustness to adversarial misuse and privacy leakage remains inaccessible to most researchers. Existing security benchmarks require GPU clusters, commercial API access, or protected health data -- barriers that limit community participation in this critical research area. We propose a practical, fully reproducible framework for evaluating medical AI security under realistic resource constraints. Our framework design covers multiple medical specialties stratified by clinical risk -- from high-risk domains such as emergency medicine and psychiatry to general practice -- addressing jailbreaking attacks (role-playing, authority impersonation, multi-turn manipulation) and privacy extraction attacks. All evaluation utilizes synthetic patient records requiring no IRB approval. The framework is designed to run entirely on consumer CPU hardware using freely available models, eliminating cost barriers. We present the framework specification including threat models, data generation methodology, evaluation protocols, and scoring rubrics. This proposal establishes a foundation for comparative security assessment of medical-specialist models and defense mechanisms, advancing the broader goal of ensuring safe and trustworthy medical AI systems.
Abstract:Ground-based cloud image segmentation is a critical research domain for photovoltaic power forecasting. Current deep learning approaches primarily focus on encoder-decoder architectural refinements. However, existing methodologies exhibit several limitations:(1)they rely on dilated convolutions for multi-scale context extraction, lacking the partial feature effectiveness and interoperability of inter-channel;(2)attention-based feature enhancement implementations neglect accuracy-throughput balance; and (3)the decoder modifications fail to establish global interdependencies among hierarchical local features, limiting inference efficiency. To address these challenges, we propose MPCM-Net, a Multi-scale network that integrates Partial attention Convolutions with Mamba architectures to enhance segmentation accuracy and computational efficiency. Specifically, the encoder incorporates MPAC, which comprises:(1)a MPC block with ParCM and ParSM that enables global spatial interaction across multi-scale cloud formations, and (2)a MPA block combining ParAM and ParSM to extract discriminative features with reduced computational complexity. On the decoder side, a M2B is employed to mitigate contextual loss through a SSHD that maintains linear complexity while enabling deep feature aggregation across spatial and scale dimensions. As a key contribution to the community, we also introduce and release a dataset CSRC, which is a clear-label, fine-grained segmentation benchmark designed to overcome the critical limitations of existing public datasets. Extensive experiments on CSRC demonstrate the superior performance of MPCM-Net over state-of-the-art methods, achieving an optimal balance between segmentation accuracy and inference speed. The dataset and source code will be available at https://github.com/she1110/CSRC.
Abstract:Semantic communications mark a paradigm shift from bit-accurate transmission toward meaning-centric communication, essential as wireless systems approach theoretical capacity limits. The emergence of generative AI has catalyzed generative semantic communications, where receivers reconstruct content from minimal semantic cues by leveraging learned priors. Among generative approaches, diffusion models stand out for their superior generation quality, stable training dynamics, and rigorous theoretical foundations. However, the field currently lacks systematic guidance connecting diffusion techniques to communication system design, forcing researchers to navigate disparate literatures. This article provides the first comprehensive tutorial on diffusion models for generative semantic communications. We present score-based diffusion foundations and systematically review three technical pillars: conditional diffusion for controllable generation, efficient diffusion for accelerated inference, and generalized diffusion for cross-domain adaptation. In addition, we introduce an inverse problem perspective that reformulates semantic decoding as posterior inference, bridging semantic communications with computational imaging. Through analysis of human-centric, machine-centric, and agent-centric scenarios, we illustrate how diffusion models enable extreme compression while maintaining semantic fidelity and robustness. By bridging generative AI innovations with communication system design, this article aims to establish diffusion models as foundational components of next-generation wireless networks and beyond.
Abstract:As machine learning systems become increasingly integrated into human-centered domains such as healthcare, ensuring fairness while maintaining high predictive performance is critical. Existing bias mitigation techniques often impose a trade-off between fairness and accuracy, inadvertently degrading performance for certain demographic groups. In high-stakes domains like clinical diagnosis, such trade-offs are ethically and practically unacceptable. In this study, we propose a fairness-without-harm approach by learning distinct representations for different demographic groups and selectively applying demographic experts consisting of group-specific representations and personalized classifiers through a no-harm constrained selection. We evaluate our approach on three real-world medical datasets -- covering eye disease, skin cancer, and X-ray diagnosis -- as well as two face datasets. Extensive empirical results demonstrate the effectiveness of our approach in achieving fairness without harm.