Ohio State University, USA
Abstract:Satellite-ground semantic communication (SemCom) is expected to play a pivotal role in convergence of communication and AI (ComAI), particularly in enabling intelligent and efficient multi-user data transmission. However, the inherent bandwidth constraints and user interference in satellite-ground systems pose significant challenges to semantic fidelity and transmission robustness. To address these issues, we propose a sensitivity-aware model division multiple access (S-MDMA) framework tailored for bandwidth-limited multi-user scenarios. The proposed framework first performs semantic extraction and merging based on the MDMA architecture to consolidate redundant information. To further improve transmission efficiency, a semantic sensitivity sorting algorithm is presented, which can selectively retain key semantic features. In addition, to mitigate inter-user interference, the framework incorporates orthogonal embedding of semantic features and introduces a multi-user reconstruction loss function to guide joint optimization. Experimental results on open-source datasets demonstrate that S-MDMA consistently outperforms existing methods, achieving robust and high-fidelity reconstruction across diverse signal-to-noise ratio (SNR) conditions and user configurations.
Abstract:Semantic Communication (SemCom), leveraging its significant advantages in transmission efficiency and reliability, has emerged as a core technology for constructing future intellicise (intelligent and concise) wireless networks. However, intelligent attacks represented by semantic eavesdropping pose severe challenges to the security of SemCom. To address this challenge, Semantic Steganographic Communication (SemSteCom) achieves ``invisible'' encryption by implicitly embedding private semantic information into cover modality carriers. The state-of-the-art study has further introduced generative diffusion models to directly generate stega images without relying on original cover images, effectively enhancing steganographic capacity. Nevertheless, the recovery process of private images is highly dependent on the guidance of private semantic keys, which may be inferred by intelligent eavesdroppers, thereby introducing new security threats. To address this issue, we propose an Agentic AI-driven SemSteCom (AgentSemSteCom) scheme, which includes semantic extraction, digital token controlled reference image generation, coverless steganography, semantic codec, and optional task-oriented enhancement modules. The proposed AgentSemSteCom scheme obviates the need for both cover images and private semantic keys, thereby boosting steganographic capacity while reinforcing transmission security. The simulation results on open-source datasets verify that, AgentSemSteCom achieves better transmission quality and higher security levels than the baseline scheme.
Abstract:Generative joint source-channel coding (GJSCC) has emerged as a new Deep JSCC paradigm for achieving high-fidelity and robust image transmission under extreme wireless channel conditions, such as ultra-low bandwidth and low signal-to-noise ratio. Recent studies commonly adopt diffusion models as generative decoders, but they frequently produce visually realistic results with limited semantic consistency. This limitation stems from a fundamental mismatch between reconstruction-oriented JSCC encoders and generative decoders, as the former lack explicit semantic discriminability and fail to provide reliable conditional cues. In this paper, we propose DiT-JSCC, a novel GJSCC backbone that can jointly learn a semantics-prioritized representation encoder and a diffusion transformer (DiT) based generative decoder, our open-source project aims to promote the future research in GJSCC. Specifically, we design a semantics-detail dual-branch encoder that aligns naturally with a coarse-to-fine conditional DiT decoder, prioritizing semantic consistency under extreme channel conditions. Moreover, a training-free adaptive bandwidth allocation strategy inspired by Kolmogorov complexity is introduced to further improve the transmission efficiency, thereby indeed redefining the notion of information value in the era of generative decoding. Extensive experiments demonstrate that DiT-JSCC consistently outperforms existing JSCC methods in both semantic consistency and visual quality, particularly in extreme regimes.
Abstract:Agentic AI networking (AgentNet) is a novel AI-native networking paradigm in which a large number of specialized AI agents collaborate to perform autonomous decision-making, dynamic environmental adaptation, and complex missions. It has the potential to facilitate real-time network management and optimization functions, including self-configuration, self-optimization, and self-adaptation across diverse and complex environments. This paper proposes SANet, a novel semantic-aware AgentNet architecture for wireless networks that can infer the semantic goal of the user and automatically assign agents associated with different layers of the network to fulfill the inferred goal. Motivated by the fact that AgentNet is a decentralized framework in which collaborating agents may generally have different and even conflicting objectives, we formulate the decentralized optimization of SANet as a multi-agent multi-objective problem, and focus on finding the Pareto-optimal solution for agents with distinct and potentially conflicting objectives. We propose three novel metrics for evaluating SANet. Furthermore, we develop a model partition and sharing (MoPS) framework in which large models, e.g., deep learning models, of different agents can be partitioned into shared and agent-specific parts that are jointly constructed and deployed according to agents' local computational resources. Two decentralized optimization algorithms are proposed. We derive theoretical bounds and prove that there exists a three-way tradeoff among optimization, generalization, and conflicting errors. We develop an open-source RAN and core network-based hardware prototype that implements agents to interact with three different layers of the network. Experimental results show that the proposed framework achieved performance gains of up to 14.61% while requiring only 44.37% of FLOPs required by state-of-the-art algorithms.
Abstract:Radio Access Network (RAN) is a bridge between user devices and the core network in mobile communication systems, responsible for the transmission and reception of wireless signals and air interface management. In recent years, Semantic Communication (SemCom) has represented a transformative communication paradigm that prioritizes meaning-level transmission over conventional bit-level delivery, thus providing improved spectrum efficiency, anti-interference ability in complex environments, flexible resource allocation, and enhanced user experience for RAN. However, there is still a lack of comprehensive reviews on the integration of SemCom into RAN. Motivated by this, we systematically explore recent advancements in Semantic RAN (SemRAN). We begin by introducing the fundamentals of RAN and SemCom, identifying the limitations of conventional RAN, and outlining the overall architecture of SemRAN. Subsequently, we review representative techniques of SemRAN across physical layer, data link layer, network layer, and security plane. Furthermore, we envision future services and applications enabled by SemRAN, alongside its current standardization progress. Finally, we conclude by identifying critical research challenges and outlining forward-looking directions to guide subsequent investigations in this burgeoning field.
Abstract:Real-world agentic tasks, unlike synchronous Markov Decision Processes (MDPs), often involve non-blocking actions with variable latencies, creating a fundamental \textit{Temporal Gap} between action initiation and completion. Existing environment-side solutions, such as blocking wrappers or frequent polling, either limit scalability or dilute the agent's context window with redundant observations. In this work, we propose an \textbf{Agent-side Approach} that empowers Large Language Models (LLMs) to actively align their \textit{Cognitive Timeline} with the physical world. By extending the Code-as-Action paradigm to the temporal domain, agents utilize semantic priors and In-Context Learning (ICL) to predict precise waiting durations (\texttt{time.sleep(t)}), effectively synchronizing with asynchronous environment without exhaustive checking. Experiments in a simulated Kubernetes cluster demonstrate that agents can precisely calibrate their internal clocks to minimize both query overhead and execution latency, validating that temporal awareness is a learnable capability essential for autonomous evolution in open-ended environments.




Abstract:Integrated sensing and communication (ISAC) has emerged as a key development direction in the sixth-generation (6G) era, which provides essential support for the collaborative sensing and communication of future intelligent networks. However, as wireless environments become increasingly dynamic and complex, ISAC systems require more intelligent processing and more autonomous operation to maintain efficiency and adaptability. Meanwhile, agentic artificial intelligence (AI) offers a feasible solution to address these challenges by enabling continuous perception-reasoning-action loops in dynamic environments to support intelligent, autonomous, and efficient operation for ISAC systems. As such, we delve into the application value and prospects of agentic AI in ISAC systems in this work. Firstly, we provide a comprehensive review of agentic AI and ISAC systems to demonstrate their key characteristics. Secondly, we show several common optimization approaches for ISAC systems and highlight the significant advantages of generative artificial intelligence (GenAI)-based agentic AI. Thirdly, we propose a novel agentic ISAC framework and prensent a case study to verify its superiority in optimizing ISAC performance. Finally, we clarify future research directions for agentic AI-based ISAC systems.




Abstract:We present ClinicalTrialsHub, an interactive search-focused platform that consolidates all data from ClinicalTrials.gov and augments it by automatically extracting and structuring trial-relevant information from PubMed research articles. Our system effectively increases access to structured clinical trial data by 83.8% compared to relying on ClinicalTrials.gov alone, with potential to make access easier for patients, clinicians, researchers, and policymakers, advancing evidence-based medicine. ClinicalTrialsHub uses large language models such as GPT-5.1 and Gemini-3-Pro to enhance accessibility. The platform automatically parses full-text research articles to extract structured trial information, translates user queries into structured database searches, and provides an attributed question-answering system that generates evidence-grounded answers linked to specific source sentences. We demonstrate its utility through a user study involving clinicians, clinical researchers, and PhD students of pharmaceutical sciences and nursing, and a systematic automatic evaluation of its information extraction and question answering capabilities.

Abstract:Medical Large Language Models (LLMs) are increasingly deployed for clinical decision support across diverse specialties, yet systematic evaluation of their robustness to adversarial misuse and privacy leakage remains inaccessible to most researchers. Existing security benchmarks require GPU clusters, commercial API access, or protected health data -- barriers that limit community participation in this critical research area. We propose a practical, fully reproducible framework for evaluating medical AI security under realistic resource constraints. Our framework design covers multiple medical specialties stratified by clinical risk -- from high-risk domains such as emergency medicine and psychiatry to general practice -- addressing jailbreaking attacks (role-playing, authority impersonation, multi-turn manipulation) and privacy extraction attacks. All evaluation utilizes synthetic patient records requiring no IRB approval. The framework is designed to run entirely on consumer CPU hardware using freely available models, eliminating cost barriers. We present the framework specification including threat models, data generation methodology, evaluation protocols, and scoring rubrics. This proposal establishes a foundation for comparative security assessment of medical-specialist models and defense mechanisms, advancing the broader goal of ensuring safe and trustworthy medical AI systems.
Abstract:Ground-based cloud image segmentation is a critical research domain for photovoltaic power forecasting. Current deep learning approaches primarily focus on encoder-decoder architectural refinements. However, existing methodologies exhibit several limitations:(1)they rely on dilated convolutions for multi-scale context extraction, lacking the partial feature effectiveness and interoperability of inter-channel;(2)attention-based feature enhancement implementations neglect accuracy-throughput balance; and (3)the decoder modifications fail to establish global interdependencies among hierarchical local features, limiting inference efficiency. To address these challenges, we propose MPCM-Net, a Multi-scale network that integrates Partial attention Convolutions with Mamba architectures to enhance segmentation accuracy and computational efficiency. Specifically, the encoder incorporates MPAC, which comprises:(1)a MPC block with ParCM and ParSM that enables global spatial interaction across multi-scale cloud formations, and (2)a MPA block combining ParAM and ParSM to extract discriminative features with reduced computational complexity. On the decoder side, a M2B is employed to mitigate contextual loss through a SSHD that maintains linear complexity while enabling deep feature aggregation across spatial and scale dimensions. As a key contribution to the community, we also introduce and release a dataset CSRC, which is a clear-label, fine-grained segmentation benchmark designed to overcome the critical limitations of existing public datasets. Extensive experiments on CSRC demonstrate the superior performance of MPCM-Net over state-of-the-art methods, achieving an optimal balance between segmentation accuracy and inference speed. The dataset and source code will be available at https://github.com/she1110/CSRC.