National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
Abstract:The upper mid-band balances coverage and capacity for the future cellular systems and also embraces XL-MIMO systems, offering enhanced spectral and energy efficiency. However, these benefits are significantly degraded under mobility due to channel aging, and further exacerbated by the unique near-field (NF) and spatial non-stationarity (SnS) propagation in such systems. To address this challenge, we propose a novel channel prediction approach that incorporates dedicated channel modeling, probabilistic representations, and Bayesian inference algorithms for this emerging scenario. Specifically, we develop tensor-structured channel models in both the spatial-frequency-temporal (SFT) and beam-delay-Doppler (BDD) domains, which leverage temporal correlations among multiple pilot symbols for channel prediction. The factor matrices of multi-linear transformations are parameterized by BDD domain grids and SnS factors, where beam domain grids are jointly determined by angles and slopes under spatial-chirp based NF representations. To enable tractable inference, we replace environment-dependent BDD domain grids with uniformly sampled ones, and introduce perturbation parameters in each domain to mitigate grid mismatch. We further propose a hybrid beam domain strategy that integrates angle-only sampling with slope hyperparameterization to avoid the computational burden of explicit slope sampling. Based on the probabilistic models, we develop tensor-structured bi-layer inference (TS-BLI) algorithm under the expectation-maximization (EM) framework, which reduces computational complexity via tensor operations by leveraging the bi-layer factor graph for approximate E-step inference and an alternating strategy with closed-form updates in the M-step. Numerical simulations based on the near-practical channel simulator demonstrate the superior channel prediction performance of the proposed algorithm.
Abstract:Heterogeneous marine-aerial swarm networks encounter substantial difficulties due to targeted communication disruptions and structural weaknesses in adversarial environments. This paper proposes a two-step framework to strengthen the network's resilience. Specifically, our framework combines the node prioritization based on criticality with multi-objective topology optimization. First, we design a three-layer architecture to represent structural, communication, and task dependencies of the swarm networks. Then, we introduce the SurBi-Ranking method, which utilizes graph convolutional networks, to dynamically evaluate and rank the criticality of nodes and edges in real time. Next, we apply the NSGA-III algorithm to optimize the network topology, aiming to balance communication efficiency, global connectivity, and mission success rate. Experiments demonstrate that compared to traditional methods like K-Shell, our SurBi-Ranking method identifies critical nodes and edges with greater accuracy, as deliberate attacks on these components cause more significant connectivity degradation. Furthermore, our optimization approach, when prioritizing SurBi-Ranked critical components under attack, reduces the natural connectivity degradation by around 30%, achieves higher mission success rates, and incurs lower communication reconfiguration costs, ensuring sustained connectivity and mission effectiveness across multi-phase operations.
Abstract:To reduce channel acquisition overhead, spatial, time, and frequency-domain channel extrapolation techniques have been widely studied. In this paper, we propose a novel deep learning-based Position-domain Channel Extrapolation framework (named PCEnet) for cell-free massive multiple-input multiple-output (MIMO) systems. The user's position, which contains significant channel characteristic information, can greatly enhance the efficiency of channel acquisition. In cell-free massive MIMO, while the propagation environments between different base stations and a specific user vary and their respective channels are uncorrelated, the user's position remains constant and unique across all channels. Building on this, the proposed PCEnet framework leverages the position as a bridge between channels to establish a mapping between the characteristics of different channels, thereby using one acquired channel to assist in the estimation and feedback of others. Specifically, this approach first utilizes neural networks (NNs) to infer the user's position from the obtained channel. {The estimated position, shared among BSs through a central processing unit (CPU)}, is then fed into an NN to design pilot symbols and concatenated with the feedback information to the channel reconstruction NN to reconstruct other channels, thereby significantly enhancing channel acquisition performance. Additionally, we propose a simplified strategy where only the estimated position is used in the reconstruction process without modifying the pilot design, thereby reducing latency. Furthermore, we introduce a position label-free approach that infers the relative user position instead of the absolute position, eliminating the need for ground truth position labels during the localization NN training. Simulation results demonstrate that the proposed PCEnet framework reduces pilot and feedback overheads by up to 50%.
Abstract:Integrated sensing and communication (ISAC) is a key feature of future cellular systems, enabling applications such as intruder detection, monitoring, and tracking using the same infrastructure. However, its potential for structural health monitoring (SHM), which requires the detection of slow and subtle structural changes, remains largely unexplored due to challenges such as multipath interference and the need for ultra-high sensing precision. This study introduces a novel theoretical framework for SHM via ISAC by leveraging reconfigurable intelligent surfaces (RIS) as reference points in collaboration with base stations and users. By dynamically adjusting RIS phases to generate distinct radio signals that suppress background multipath interference, measurement accuracy at these reference points is enhanced. We theoretically analyze RIS-aided collaborative sensing in three-dimensional cellular networks using Fisher information theory, demonstrating how increasing observation time, incorporating additional receivers (even with self-positioning errors), optimizing RIS phases, and refining collaborative node selection can reduce the position error bound to meet SHM's stringent accuracy requirements. Furthermore, we develop a Bayesian inference model to identify structural states and validate damage detection probabilities. Both theoretical and numerical analyses confirm ISAC's capability for millimeter-level deformation detection, highlighting its potential for high-precision SHM applications.
Abstract:Reconfigurable intelligent surfaces (RISs) offer the unique capability to reshape the radio environment, thereby simplifying transmission schemes traditionally contingent on channel conditions. Joint spatial division and multiplexing (JSDM) emerges as a low-overhead transmission scheme for multi-user equipment (UE) scenarios, typically requiring complex matrix decomposition to achieve block-diagonalization of the effective channel matrix. In this study, we introduce an innovative JSDM design that leverages RISs to customize channels, thereby streamlining the overall procedures. By strategically positioning RISs at the discrete Fourier transform (DFT) directions of the base station (BS), we establish orthogonal line-of-sight links within the BS-RIS channel, enabling a straightforward pre-beamforming design. Based on UE grouping, we devise reflected beams of the RIS with optimized directions to mitigate inter-group interference in the RISs-UEs channel. An approximation of the channel cross-correlation coefficient is derived and serves as a foundation for the RISs-UEs association, further diminishing inter-group interference. Numerical results substantiate the efficacy of our RIS-customized JSDM in not only achieving effective channel block-diagonalization but also in significantly enhancing the sum spectral efficiency for multi-UE transmissions.
Abstract:Reliable detection of surrounding objects is critical for the safe operation of connected automated vehicles (CAVs). However, inherent limitations such as the restricted perception range and occlusion effects compromise the reliability of single-vehicle perception systems in complex traffic environments. Collaborative perception has emerged as a promising approach by fusing sensor data from surrounding CAVs with diverse viewpoints, thereby improving environmental awareness. Although collaborative perception holds great promise, its performance is bottlenecked by wireless communication constraints, as unreliable and bandwidth-limited channels hinder the transmission of sensor data necessary for real-time perception. To address these challenges, this paper proposes SComCP, a novel task-oriented semantic communication framework for collaborative perception. Specifically, SComCP integrates an importance-aware feature selection network that selects and transmits semantic features most relevant to the perception task, significantly reducing communication overhead without sacrificing accuracy. Furthermore, we design a semantic codec network based on a joint source and channel coding (JSCC) architecture, which enables bidirectional transformation between semantic features and noise-tolerant channel symbols, thereby ensuring stable perception under adverse wireless conditions. Extensive experiments demonstrate the effectiveness of the proposed framework. In particular, compared to existing approaches, SComCP can maintain superior perception performance across various channel conditions, especially in low signal-to-noise ratio (SNR) scenarios. In addition, SComCP exhibits strong generalization capability, enabling the framework to maintain high performance across diverse channel conditions, even when trained with a specific channel model.
Abstract:With the development of the upcoming sixth-generation networks (6G), reconfigurable intelligent surfaces (RISs) have gained significant attention due to its ability of reconfiguring wireless channels via smart reflections. However, traditional channel state information (CSI) acquisition techniques for double-RIS systems face challenges (e.g., high pilot overhead or multipath interference). This paper proposes a new channel generation method in double-RIS communication systems based on the tool of conditional diffusion model (CDM). The CDM is trained on synthetic channel data to capture channel characteristics. It addresses the limitations of traditional CSI generation methods, such as insufficient model understanding capability and poor environmental adaptability. We provide a detailed analysis of the diffusion process for channel generation, and it is validated through simulations. The simulation results demonstrate that the proposed CDM based method outperforms traditional channel acquisition methods in terms of normalized mean squared error (NMSE). This method offers a new paradigm for channel acquisition in double-RIS systems, which is expected to improve the quality of channel acquisition with low pilot overhead.
Abstract:In this article, we introduce a novel low-altitude wireless network (LAWN), which is a reconfigurable, three-dimensional (3D) layered architecture. In particular, the LAWN integrates connectivity, sensing, control, and computing across aerial and terrestrial nodes that enable seamless operation in complex, dynamic, and mission-critical environments. In this article, we introduce a novel low-altitude wireless network (LAWN), which is a reconfigurable, three-dimensional (3D) layered architecture. Different from the conventional aerial communication systems, LAWN's distinctive feature is its tight integration of functional planes in which multiple functionalities continually reshape themselves to operate safely and efficiently in the low-altitude sky. With the LAWN, we discuss several enabling technologies, such as integrated sensing and communication (ISAC), semantic communication, and fully-actuated control systems. Finally, we identify potential applications and key cross-layer challenges. This article offers a comprehensive roadmap for future research and development in the low-altitude airspace.
Abstract:With the growing number of users in multi-user multiple-input multiple-output (MU-MIMO) systems, demodulation reference signals (DMRSs) are efficiently multiplexed in the code domain via orthogonal cover codes (OCC) to ensure orthogonality and minimize pilot interference. In this paper, we investigate uplink DMRS-based channel estimation for MU-MIMO systems with Type II OCC pattern standardized in 3GPP Release 18, leveraging location-specific statistical channel state information (SCSI) to enhance performance. Specifically, we propose a SCSI-assisted Bayesian channel estimator (SA-BCE) based on the minimum mean square error criterion to suppress the pilot interference and noise, albeit at the cost of cubic computational complexity due to matrix inversions. To reduce this complexity while maintaining performance, we extend the scheme to a windowed version (SA-WBCE), which incorporates antenna-frequency domain windowing and beam-delay domain processing to exploit asymptotic sparsity and mitigate energy leakage in practical systems. To avoid the frequent real-time SCSI acquisition, we construct a grid-based location-specific SCSI database based on the principle of spatial consistency, and subsequently leverage the uplink received signals within each grid to extract the SCSI. Facilitated by the multilinear structure of wireless channels, we formulate the SCSI acquisition problem within each grid as a tensor decomposition problem, where the factor matrices are parameterized by the multi-path powers, delays, and angles. The computational complexity of SCSI acquisition can be significantly reduced by exploiting the Vandermonde structure of the factor matrices. Simulation results demonstrate that the proposed location-specific SCSI database construction method achieves high accuracy, while the SA-BCE and SA-WBCE significantly outperform state-of-the-art benchmarks in MU-MIMO systems.
Abstract:Decision Transformer (DT) has recently demonstrated strong generalizability in dynamic resource allocation within unmanned aerial vehicle (UAV) networks, compared to conventional deep reinforcement learning (DRL). However, its performance is hindered due to zero-padding for varying state dimensions, inability to manage long-term energy constraint, and challenges in acquiring expert samples for few-shot fine-tuning in new scenarios. To overcome these limitations, we propose an attention-enhanced prompt Decision Transformer (APDT) framework to optimize trajectory planning and user scheduling, aiming to minimize the average age of information (AoI) under long-term energy constraint in UAV-assisted Internet of Things (IoT) networks. Specifically, we enhance the convenional DT framework by incorporating an attention mechanism to accommodate varying numbers of terrestrial users, introducing a prompt mechanism based on short trajectory demonstrations for rapid adaptation to new scenarios, and designing a token-assisted method to address the UAV's long-term energy constraint. The APDT framework is first pre-trained on offline datasets and then efficiently generalized to new scenarios. Simulations demonstrate that APDT achieves twice faster in terms of convergence rate and reduces average AoI by $8\%$ compared to conventional DT.