Abstract:Recent years have witnessed the remarkable success of recommendation systems (RSs) in alleviating the information overload problem. As a new paradigm of RSs, session-based recommendation (SR) specializes in users' short-term preference capture and aims to provide a more dynamic and timely recommendation based on the ongoing interacted actions. In this survey, we will give a comprehensive overview of the recent works on SR. First, we clarify the definitions of various SR tasks and introduce the characteristics of session-based recommendation against other recommendation tasks. Then, we summarize the existing methods in two categories: sequential neural network based methods and graph neural network (GNN) based methods. The standard frameworks and technical are also introduced. Finally, we discuss the challenges of SR and new research directions in this area.
Abstract:Pre-training exploits public datasets to pre-train an advanced machine learning model, so that the model can be easily tuned to adapt to various downstream tasks. Pre-training has been extensively explored to mitigate computation and communication resource consumption. Inspired by these advantages, we are the first to explore how model pre-training can mitigate noise detriment in differentially private federated learning (DPFL). DPFL is upgraded from federated learning (FL), the de-facto standard for privacy preservation when training the model across multiple clients owning private data. DPFL introduces differentially private (DP) noises to obfuscate model gradients exposed in FL, which however can considerably impair model accuracy. In our work, we compare head fine-tuning (HT) and full fine-tuning (FT), which are based on pre-training, with scratch training (ST) in DPFL through a comprehensive empirical study. Our experiments tune pre-trained models (obtained by pre-training on ImageNet-1K) with CIFAR-10, CHMNIST and Fashion-MNIST (FMNIST) datasets, respectively. The results demonstrate that HT and FT can significantly mitigate noise influence by diminishing gradient exposure times. In particular, HT outperforms FT when the privacy budget is tight or the model size is large. Visualization and explanation study further substantiates our findings. Our pioneering study introduces a new perspective on enhancing DPFL and expanding its practical applications.
Abstract:To preserve the data privacy, the federated learning (FL) paradigm emerges in which clients only expose model gradients rather than original data for conducting model training. To enhance the protection of model gradients in FL, differentially private federated learning (DPFL) is proposed which incorporates differentially private (DP) noises to obfuscate gradients before they are exposed. Yet, an essential but largely overlooked problem in DPFL is the heterogeneity of clients' privacy requirement, which can vary significantly between clients and extremely complicates the client selection problem in DPFL. In other words, both the data quality and the influence of DP noises should be taken into account when selecting clients. To address this problem, we conduct convergence analysis of DPFL under heterogeneous privacy, a generic client selection strategy, popular DP mechanisms and convex loss. Based on convergence analysis, we formulate the client selection problem to minimize the value of loss function in DPFL with heterogeneous privacy, which is a convex optimization problem and can be solved efficiently. Accordingly, we propose the DPFL-BCS (biased client selection) algorithm. The extensive experiment results with real datasets under both convex and non-convex loss functions indicate that DPFL-BCS can remarkably improve model utility compared with the SOTA baselines.
Abstract:Exploring the complex structure of the human brain is crucial for understanding its functionality and diagnosing brain disorders. Thanks to advancements in neuroimaging technology, a novel approach has emerged that involves modeling the human brain as a graph-structured pattern, with different brain regions represented as nodes and the functional relationships among these regions as edges. Moreover, graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data. Developing GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention. However, there is a lack of systematic survey work summarizing current research methods in this domain. In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs. We first introduce the process of brain graph modeling based on common neuroimaging data. Subsequently, we systematically categorize current works based on the type of brain graph generated and the targeted research problems. To make this research accessible to a broader range of interested researchers, we provide an overview of representative methods and commonly used datasets, along with their implementation sources. Finally, we present our insights on future research directions. The repository of this survey is available at \url{https://github.com/XuexiongLuoMQ/Awesome-Brain-Graph-Learning-with-GNNs}.
Abstract:Pedestrian trajectory prediction plays a pivotal role in the realms of autonomous driving and smart cities. Despite extensive prior research employing sequence and generative models, the unpredictable nature of pedestrians, influenced by their social interactions and individual preferences, presents challenges marked by uncertainty and multimodality. In response, we propose the Energy Plan Denoising (EPD) model for stochastic trajectory prediction. EPD initially provides a coarse estimation of the distribution of future trajectories, termed the Plan, utilizing the Langevin Energy Model. Subsequently, it refines this estimation through denoising via the Probabilistic Diffusion Model. By initiating denoising with the Plan, EPD effectively reduces the need for iterative steps, thereby enhancing efficiency. Furthermore, EPD differs from conventional approaches by modeling the distribution of trajectories instead of individual trajectories. This allows for the explicit modeling of pedestrian intrinsic uncertainties and eliminates the need for multiple denoising operations. A single denoising operation produces a distribution from which multiple samples can be drawn, significantly enhancing efficiency. Moreover, EPD's fine-tuning of the Plan contributes to improved model performance. We validate EPD on two publicly available datasets, where it achieves state-of-the-art results. Additionally, ablation experiments underscore the contributions of individual modules, affirming the efficacy of the proposed approach.
Abstract:Despite the significant progress of fully-supervised video captioning, zero-shot methods remain much less explored. In this paper, we propose to take advantage of existing pre-trained large-scale vision and language models to directly generate captions with test time adaptation. Specifically, we bridge video and text using three key models: a general video understanding model XCLIP, a general image understanding model CLIP, and a text generation model GPT-2, due to their source-code availability. The main challenge is how to enable the text generation model to be sufficiently aware of the content in a given video so as to generate corresponding captions. To address this problem, we propose using learnable tokens as a communication medium between frozen GPT-2 and frozen XCLIP as well as frozen CLIP. Differing from the conventional way to train these tokens with training data, we update these tokens with pseudo-targets of the inference data under several carefully crafted loss functions which enable the tokens to absorb video information catered for GPT-2. This procedure can be done in just a few iterations (we use 16 iterations in the experiments) and does not require ground truth data. Extensive experimental results on three widely used datasets, MSR-VTT, MSVD, and VATEX, show 4% to 20% improvements in terms of the main metric CIDEr compared to the existing state-of-the-art methods.
Abstract:The exploration of high-speed movement by robots or road traffic agents is crucial for autonomous driving and navigation. Trajectory prediction at high speeds requires considering historical features and interactions with surrounding entities, a complexity not as pronounced in lower-speed environments. Prior methods have assessed the spatio-temporal dynamics of agents but often neglected intrinsic intent and uncertainty, thereby limiting their effectiveness. We present the Denoised Endpoint Distribution model for trajectory prediction, which distinctively models agents' spatio-temporal features alongside their intrinsic intentions and uncertainties. By employing Diffusion and Transformer models to focus on agent endpoints rather than entire trajectories, our approach significantly reduces model complexity and enhances performance through endpoint information. Our experiments on open datasets, coupled with comparison and ablation studies, demonstrate our model's efficacy and the importance of its components. This approach advances trajectory prediction in high-speed scenarios and lays groundwork for future developments.
Abstract:Distractors are important in learning evaluation. This paper surveys distractor generation tasks using English multiple-choice question datasets for textual and multimodal contexts. In particular, this paper presents a thorough literature review of the recent studies on distractor generation tasks, discusses multiple choice components and their characteristics, analyzes the related datasets, and summarizes the evaluation metrics of distractor generation. Our investigation reveals that more than half of datasets are human-generated from educational sources in specific domains such as Science and English, which are largely text-based, with a lack of open domain and multimodal datasets.
Abstract:Brain-Computer Interfaces (BCIs) are a groundbreaking technology for interacting with external devices using brain signals. Despite advancements, electroencephalogram (EEG)-based Motor Imagery (MI) tasks face challenges like amplitude and phase variability, and complex spatial correlations, with a need for smaller model size and faster inference. This study introduces the LGL-BCI framework, employing a Geometric Deep Learning Framework for EEG processing in non-Euclidean metric spaces, particularly the Symmetric Positive Definite (SPD) Manifold space. LGL-BCI offers robust EEG data representation and captures spatial correlations. We propose an EEG channel selection solution via a feature decomposition algorithm to reduce SPD matrix dimensionality, with a lossless transformation boosting inference speed. Extensive experiments show LGL-BCI's superior accuracy and efficiency compared to current solutions, highlighting geometric deep learning's potential in MI-BCI applications. The efficiency, assessed on two public EEG datasets and two real-world EEG devices, significantly outperforms the state-of-the-art solution in accuracy ($82.54\%$ versus $62.22\%$) with fewer parameters (64.9M compared to 183.7M).
Abstract:Citations in scholarly work serve the essential purpose of acknowledging and crediting the original sources of knowledge that have been incorporated or referenced. Depending on their surrounding textual context, these citations are used for different motivations and purposes. Large Language Models (LLMs) could be helpful in capturing these fine-grained citation information via the corresponding textual context, thereby enabling a better understanding towards the literature. Furthermore, these citations also establish connections among scientific papers, providing high-quality inter-document relationships and human-constructed knowledge. Such information could be incorporated into LLMs pre-training and improve the text representation in LLMs. Therefore, in this paper, we offer a preliminary review of the mutually beneficial relationship between LLMs and citation analysis. Specifically, we review the application of LLMs for in-text citation analysis tasks, including citation classification, citation-based summarization, and citation recommendation. We then summarize the research pertinent to leveraging citation linkage knowledge to improve text representations of LLMs via citation prediction, network structure information, and inter-document relationship. We finally provide an overview of these contemporary methods and put forth potential promising avenues in combining LLMs and citation analysis for further investigation.