Citations in scholarly work serve the essential purpose of acknowledging and crediting the original sources of knowledge that have been incorporated or referenced. Depending on their surrounding textual context, these citations are used for different motivations and purposes. Large Language Models (LLMs) could be helpful in capturing these fine-grained citation information via the corresponding textual context, thereby enabling a better understanding towards the literature. Furthermore, these citations also establish connections among scientific papers, providing high-quality inter-document relationships and human-constructed knowledge. Such information could be incorporated into LLMs pre-training and improve the text representation in LLMs. Therefore, in this paper, we offer a preliminary review of the mutually beneficial relationship between LLMs and citation analysis. Specifically, we review the application of LLMs for in-text citation analysis tasks, including citation classification, citation-based summarization, and citation recommendation. We then summarize the research pertinent to leveraging citation linkage knowledge to improve text representations of LLMs via citation prediction, network structure information, and inter-document relationship. We finally provide an overview of these contemporary methods and put forth potential promising avenues in combining LLMs and citation analysis for further investigation.
Deep Generative AI has been a long-standing essential topic in the machine learning community, which can impact a number of application areas like text generation and computer vision. The major paradigm to train a generative model is maximum likelihood estimation, which pushes the learner to capture and approximate the target data distribution by decreasing the divergence between the model distribution and the target distribution. This formulation successfully establishes the objective of generative tasks, while it is incapable of satisfying all the requirements that a user might expect from a generative model. Reinforcement learning, serving as a competitive option to inject new training signals by creating new objectives that exploit novel signals, has demonstrated its power and flexibility to incorporate human inductive bias from multiple angles, such as adversarial learning, hand-designed rules and learned reward model to build a performant model. Thereby, reinforcement learning has become a trending research field and has stretched the limits of generative AI in both model design and application. It is reasonable to summarize and conclude advances in recent years with a comprehensive review. Although there are surveys in different application areas recently, this survey aims to shed light on a high-level review that spans a range of application areas. We provide a rigorous taxonomy in this area and make sufficient coverage on various models and applications. Notably, we also surveyed the fast-developing large language model area. We conclude this survey by showing the potential directions that might tackle the limit of current models and expand the frontiers for generative AI.
Cardiovascular diseases (CVD) are the leading cause of death globally, and early detection can significantly improve outcomes for patients. Machine learning (ML) models can help diagnose CVDs early, but their performance is limited by the data available for model training. Privacy concerns in healthcare make it harder to acquire data to train accurate ML models. Federated learning (FL) is an emerging approach to machine learning that allows models to be trained on data from multiple sources without compromising the privacy of the individual data owners. This survey paper provides an overview of the current state-of-the-art in FL for CVD detection. We review the different FL models proposed in various papers and discuss their advantages and challenges. We also compare FL with traditional centralized learning approaches and highlight the differences in terms of model accuracy, privacy, and data distribution handling capacity. Finally, we provide a critical analysis of FL's current challenges and limitations for CVD detection and discuss potential avenues for future research. Overall, this survey paper aims to provide a comprehensive overview of the current state-of-the-art in FL for CVD detection and to highlight its potential for improving the accuracy and privacy of CVD detection models.
The increasing demand for the web-based digital assistants has given a rapid rise in the interest of the Information Retrieval (IR) community towards the field of conversational question answering (ConvQA). However, one of the critical aspects of ConvQA is the effective selection of conversational history turns to answer the question at hand. The dependency between relevant history selection and correct answer prediction is an intriguing but under-explored area. The selected relevant context can better guide the system so as to where exactly in the passage to look for an answer. Irrelevant context, on the other hand, brings noise to the system, thereby resulting in a decline in the model's performance. In this paper, we propose a framework, DHS-ConvQA (Dynamic History Selection in Conversational Question Answering), that first generates the context and question entities for all the history turns, which are then pruned on the basis of similarity they share in common with the question at hand. We also propose an attention-based mechanism to re-rank the pruned terms based on their calculated weights of how useful they are in answering the question. In the end, we further aid the model by highlighting the terms in the re-ranked conversational history using a binary classification task and keeping the useful terms (predicted as 1) and ignoring the irrelevant terms (predicted as 0). We demonstrate the efficacy of our proposed framework with extensive experimental results on CANARD and QuAC -- the two popularly utilized datasets in ConvQA. We demonstrate that selecting relevant turns works better than rewriting the original question. We also investigate how adding the irrelevant history turns negatively impacts the model's performance and discuss the research challenges that demand more attention from the IR community.
Knowledge graph completion (KGC) is the task of inferencing missing facts from any given knowledge graphs (KG). Previous KGC methods typically represent knowledge graph entities and relations as trainable continuous embeddings and fuse the embeddings of the entity $h$ (or $t$) and relation $r$ into hidden representations of query $(h, r, ?)$ (or $(?, r, t$)) to approximate the missing entities. To achieve this, they either use shallow linear transformations or deep convolutional modules. However, the linear transformations suffer from the expressiveness issue while the deep convolutional modules introduce unnecessary inductive bias, which could potentially degrade the model performance. Thus, we propose a novel Transformer-based Patch Refinement Model (PatReFormer) for KGC. PatReFormer first segments the embedding into a sequence of patches and then employs cross-attention modules to allow bi-directional embedding feature interaction between the entities and relations, leading to a better understanding of the underlying KG. We conduct experiments on four popular KGC benchmarks, WN18RR, FB15k-237, YAGO37 and DB100K. The experimental results show significant performance improvement from existing KGC methods on standard KGC evaluation metrics, e.g., MRR and H@n. Our analysis first verifies the effectiveness of our model design choices in PatReFormer. We then find that PatReFormer can better capture KG information from a large relation embedding dimension. Finally, we demonstrate that the strength of PatReFormer is at complex relation types, compared to other KGC models
Generative Pre-trained Transformer (GPT) is a state-of-the-art machine learning model capable of generating human-like text through natural language processing (NLP). GPT is trained on massive amounts of text data and uses deep learning techniques to learn patterns and relationships within the data, enabling it to generate coherent and contextually appropriate text. This position paper proposes using GPT technology to generate new process models when/if needed. We introduce ProcessGPT as a new technology that has the potential to enhance decision-making in data-centric and knowledge-intensive processes. ProcessGPT can be designed by training a generative pre-trained transformer model on a large dataset of business process data. This model can then be fine-tuned on specific process domains and trained to generate process flows and make decisions based on context and user input. The model can be integrated with NLP and machine learning techniques to provide insights and recommendations for process improvement. Furthermore, the model can automate repetitive tasks and improve process efficiency while enabling knowledge workers to communicate analysis findings, supporting evidence, and make decisions. ProcessGPT can revolutionize business process management (BPM) by offering a powerful tool for process augmentation, automation and improvement. Finally, we demonstrate how ProcessGPT can be a powerful tool for augmenting data engineers in maintaining data ecosystem processes within large bank organizations. Our scenario highlights the potential of this approach to improve efficiency, reduce costs, and enhance the quality of business operations through the automation of data-centric and knowledge-intensive processes. These results underscore the promise of ProcessGPT as a transformative technology for organizations looking to improve their process workflows.
Federated learning (FL) is a prospective distributed machine learning framework that can preserve data privacy. In particular, cross-silo FL can complete model training by making isolated data islands of different organizations collaborate with a parameter server (PS) via exchanging model parameters for multiple communication rounds. In cross-silo FL, an incentive mechanism is indispensable for motivating data owners to contribute their models to FL training. However, how to allocate the reward budget among different rounds is an essential but complicated problem largely overlooked by existing works. The challenge of this problem lies in the opaque feedback between reward budget allocation and model utility improvement of FL, making the optimal reward budget allocation complicated. To address this problem, we design an online reward budget allocation algorithm using Bayesian optimization named BARA (\underline{B}udget \underline{A}llocation for \underline{R}everse \underline{A}uction). Specifically, BARA can model the complicated relationship between reward budget allocation and final model accuracy in FL based on historical training records so that the reward budget allocated to each communication round is dynamically optimized so as to maximize the final model utility. We further incorporate the BARA algorithm into reverse auction-based incentive mechanisms to illustrate its effectiveness. Extensive experiments are conducted on real datasets to demonstrate that BARA significantly outperforms competitive baselines by improving model utility with the same amount of reward budget.
Recommendation models are typically trained on observational user interaction data, but the interactions between latent factors in users' decision-making processes lead to complex and entangled data. Disentangling these latent factors to uncover their underlying representation can improve the robustness, interpretability, and controllability of recommendation models. This paper introduces the Causal Disentangled Variational Auto-Encoder (CaD-VAE), a novel approach for learning causal disentangled representations from interaction data in recommender systems. The CaD-VAE method considers the causal relationships between semantically related factors in real-world recommendation scenarios, rather than enforcing independence as in existing disentanglement methods. The approach utilizes structural causal models to generate causal representations that describe the causal relationship between latent factors. The results demonstrate that CaD-VAE outperforms existing methods, offering a promising solution for disentangling complex user behavior data in recommendation systems.
Having an intelligent dialogue agent that can engage in conversational question answering (ConvQA) is now no longer limited to Sci-Fi movies only and has, in fact, turned into a reality. These intelligent agents are required to understand and correctly interpret the sequential turns provided as the context of the given question. However, these sequential questions are sometimes left implicit and thus require the resolution of some natural language phenomena such as anaphora and ellipsis. The task of question rewriting has the potential to address the challenges of resolving dependencies amongst the contextual turns by transforming them into intent-explicit questions. Nonetheless, the solution of rewriting the implicit questions comes with some potential challenges such as resulting in verbose questions and taking conversational aspect out of the scenario by generating self-contained questions. In this paper, we propose a novel framework, CONVSR (CONVQA using Structured Representations) for capturing and generating intermediate representations as conversational cues to enhance the capability of the QA model to better interpret the incomplete questions. We also deliberate how the strengths of this task could be leveraged in a bid to design more engaging and eloquent conversational agents. We test our model on the QuAC and CANARD datasets and illustrate by experimental results that our proposed framework achieves a better F1 score than the standard question rewriting model.