Abstract:AI-powered autonomous experimentation (AI/AE) can accelerate materials discovery but its effectiveness for electronic materials is hindered by data scarcity from lengthy and complex design-fabricate-test-analyze cycles. Unlike experienced human scientists, even advanced AI algorithms in AI/AE lack the adaptability to make informative real-time decisions with limited datasets. Here, we address this challenge by developing and implementing an AI decision interface on our AI/AE system. The central element of the interface is an AI advisor that performs real-time progress monitoring, data analysis, and interactive human-AI collaboration for actively adapting to experiments in different stages and types. We applied this platform to an emerging type of electronic materials-mixed ion-electron conducting polymers (MIECPs) -- to engineer and study the relationships between multiscale morphology and properties. Using organic electrochemical transistors (OECT) as the testing-bed device for evaluating the mixed-conducting figure-of-merit -- the product of charge-carrier mobility and the volumetric capacitance ({\mu}C*), our adaptive AI/AE platform achieved a 150% increase in {\mu}C* compared to the commonly used spin-coating method, reaching 1,275 F cm-1 V-1 s-1 in just 64 autonomous experimental trials. A study of 10 statistically selected samples identifies two key structural factors for achieving higher volumetric capacitance: larger crystalline lamellar spacing and higher specific surface area, while also uncovering a new polymer polymorph in this material.
Abstract:Drug-target binding affinity prediction is a fundamental task for drug discovery. It has been extensively explored in literature and promising results are reported. However, in this paper, we demonstrate that the results may be misleading and cannot be well generalized to real practice. The core observation is that the canonical randomized split of a test set in conventional evaluation leaves the test set dominated by samples with high similarity to the training set. The performance of models is severely degraded on samples with lower similarity to the training set but the drawback is highly overlooked in current evaluation. As a result, the performance can hardly be trusted when the model meets low-similarity samples in real practice. To address this problem, we propose a framework of similarity aware evaluation in which a novel split methodology is proposed to adapt to any desired distribution. This is achieved by a formulation of optimization problems which are approximately and efficiently solved by gradient descent. We perform extensive experiments across five representative methods in four datasets for two typical target evaluations and compare them with various counterpart methods. Results demonstrate that the proposed split methodology can significantly better fit desired distributions and guide the development of models. Code is released at https://github.com/Amshoreline/SAE/tree/main.
Abstract:SLAM technology plays a crucial role in indoor mapping and localization. A common challenge in indoor environments is the "double-sided mapping issue", where closely positioned walls, doors, and other surfaces are mistakenly identified as a single plane, significantly hindering map accuracy and consistency. To address this issue this paper introduces a SLAM approach that ensures accurate mapping using normal vector consistency. We enhance the voxel map structure to store both point cloud data and normal vector information, enabling the system to evaluate consistency during nearest neighbor searches and map updates. This process distinguishes between the front and back sides of surfaces, preventing incorrect point-to-plane constraints. Moreover, we implement an adaptive radius KD-tree search method that dynamically adjusts the search radius based on the local density of the point cloud, thereby enhancing the accuracy of normal vector calculations. To further improve realtime performance and storage efficiency, we incorporate a Least Recently Used (LRU) cache strategy, which facilitates efficient incremental updates of the voxel map. The code is released as open-source and validated in both simulated environments and real indoor scenarios. Experimental results demonstrate that this approach effectively resolves the "double-sided mapping issue" and significantly improves mapping precision. Additionally, we have developed and open-sourced the first simulation and real world dataset specifically tailored for the "double-sided mapping issue".
Abstract:Integrated Sensing and Communications (ISAC) enables efficient spectrum utilization and reduces hardware costs for beyond 5G (B5G) and 6G networks, facilitating intelligent applications that require both high-performance communication and precise sensing capabilities. This survey provides a comprehensive review of the evolution of ISAC over the years. We examine the expansion of the spectrum across RF and optical ISAC, highlighting the role of advanced technologies, along with key challenges and synergies. We further discuss the advancements in network architecture from single-cell to multi-cell systems, emphasizing the integration of collaborative sensing and interference mitigation strategies. Moreover, we analyze the progress from single-modal to multi-modal sensing, with a focus on the integration of edge intelligence to enable real-time data processing, reduce latency, and enhance decision-making. Finally, we extensively review standardization efforts by 3GPP, IEEE, and ITU, examining the transition of ISAC-related technologies and their implications for the deployment of 6G networks.
Abstract:The accuracy of the initial state, including initial velocity, gravity direction, and IMU biases, is critical for the initialization of LiDAR-inertial SLAM systems. Inaccurate initial values can reduce initialization speed or lead to failure. When the system faces urgent tasks, robust and fast initialization is required while the robot is moving, such as during the swift assessment of rescue environments after natural disasters, bomb disposal, and restarting LiDAR-inertial SLAM in rescue missions. However, existing initialization methods usually require the platform to remain stationary, which is ineffective when the robot is in motion. To address this issue, this paper introduces a robust and fast dynamic initialization method for LiDAR-inertial systems (D-LI-Init). This method iteratively aligns LiDAR-based odometry with IMU measurements to achieve system initialization. To enhance the reliability of the LiDAR odometry module, the LiDAR and gyroscope are tightly integrated within the ESIKF framework. The gyroscope compensates for rotational distortion in the point cloud. Translational distortion compensation occurs during the iterative update phase, resulting in the output of LiDAR-gyroscope odometry. The proposed method can initialize the system no matter the robot is moving or stationary. Experiments on public datasets and real-world environments demonstrate that the D-LI-Init algorithm can effectively serve various platforms, including vehicles, handheld devices, and UAVs. D-LI-Init completes dynamic initialization regardless of specific motion patterns. To benefit the research community, we have open-sourced our code and test datasets on GitHub.
Abstract:SLAM plays a crucial role in automation tasks, such as warehouse logistics, healthcare robotics, and restaurant delivery. These scenes come with various challenges, including navigating around crowds of people, dealing with flying plastic bags that can temporarily blind sensors, and addressing reduced LiDAR density caused by cooking smoke. Such scenarios can result in over-degeneracy, causing the map to drift. To address this issue, this paper presents a multi-map LiDAR-inertial system (MM-LINS) for the first time. The front-end employs an iterated error state Kalman filter for state estimation and introduces a reliable evaluation strategy for degeneracy detection. If over-degeneracy is detected, the active map will be stored into sleeping maps. Subsequently, the system continuously attempts to construct new maps using a dynamic initialization method to ensure successful initialization upon leaving the over-degeneracy. Regarding the back-end, the Scan Context descriptor is utilized to detect inter-map similarity. Upon successful recognition of a sleeping map that shares a common region with the active map, the overlapping trajectory region is utilized to constrain the positional transformation near the edge of the prior map. In response to this, a constraint-enhanced map fusion strategy is proposed to achieve high-precision positional and mapping results. Experiments have been conducted separately on both public datasets that exhibited over-degenerate conditions and in real-world environments. These tests demonstrated the effectiveness of MM-LINS in over-degeneracy environment. Our codes are open-sourced on Github.
Abstract:Fine-tuning large language models (LLMs) in federated settings enables privacy-preserving adaptation but suffers from cross-client interference due to model aggregation. Existing federated LoRA fine-tuning methods, primarily based on FedAvg, struggle with data heterogeneity, leading to harmful cross-client interference and suboptimal personalization. In this work, we propose \textbf{FedALT}, a novel personalized federated LoRA fine-tuning algorithm that fundamentally departs from FedAvg. Instead of using an aggregated model to initialize local training, each client continues training its individual LoRA while incorporating shared knowledge through a separate Rest-of-the-World (RoTW) LoRA component. To effectively balance local adaptation and global information, FedALT introduces an adaptive mixer that dynamically learns input-specific weightings between the individual and RoTW LoRA components using the Mixture-of-Experts (MoE) principle. Through extensive experiments on NLP benchmarks, we demonstrate that FedALT significantly outperforms state-of-the-art personalized federated LoRA fine-tuning methods, achieving superior local adaptation without sacrificing computational efficiency.
Abstract:A prior map serves as a foundational reference for localization in context-aware applications such as augmented reality (AR). Providing valuable contextual information about the environment, the prior map is a vital tool for mitigating drift. In this paper, we propose a map-based visual-inertial localization algorithm (NeRF-VIO) with initialization using neural radiance fields (NeRF). Our algorithm utilizes a multilayer perceptron model and redefines the loss function as the geodesic distance on \(SE(3)\), ensuring the invariance of the initialization model under a frame change within \(\mathfrak{se}(3)\). The evaluation demonstrates that our model outperforms existing NeRF-based initialization solution in both accuracy and efficiency. By integrating a two-stage update mechanism within a multi-state constraint Kalman filter (MSCKF) framework, the state of NeRF-VIO is constrained by both captured images from an onboard camera and rendered images from a pre-trained NeRF model. The proposed algorithm is validated using a real-world AR dataset, the results indicate that our two-stage update pipeline outperforms MSCKF across all data sequences.
Abstract:Accurate LiDAR-Camera (LC) calibration is challenging but crucial for autonomous systems and robotics. In this paper, we propose two single-shot and target-less algorithms to estimate the calibration parameters between LiDAR and camera using line features. The first algorithm constructs line-to-line constraints by defining points-to-line projection errors and minimizes the projection error. The second algorithm (PLK-Calib) utilizes the co-perpendicular and co-parallel geometric properties of lines in Pl\"ucker (PLK) coordinate, and decouples the rotation and translation into two constraints, enabling more accurate estimates. Our degenerate analysis and Monte Carlo simulation indicate that three nonparallel line pairs are the minimal requirements to estimate the extrinsic parameters. Furthermore, we collect an LC calibration dataset with varying extrinsic under three different scenarios and use it to evaluate the performance of our proposed algorithms.
Abstract:Large language models (LLMs) excel in various NLP tasks and modern medicine, but their evaluation in traditional Chinese medicine (TCM) is underexplored. To address this, we introduce TCM3CEval, a benchmark assessing LLMs in TCM across three dimensions: core knowledge mastery, classical text understanding, and clinical decision-making. We evaluate diverse models, including international (e.g., GPT-4o), Chinese (e.g., InternLM), and medical-specific (e.g., PLUSE). Results show a performance hierarchy: all models have limitations in specialized subdomains like Meridian & Acupoint theory and Various TCM Schools, revealing gaps between current capabilities and clinical needs. Models with Chinese linguistic and cultural priors perform better in classical text interpretation and clinical reasoning. TCM-3CEval sets a standard for AI evaluation in TCM, offering insights for optimizing LLMs in culturally grounded medical domains. The benchmark is available on Medbench's TCM track, aiming to assess LLMs' TCM capabilities in basic knowledge, classic texts, and clinical decision-making through multidimensional questions and real cases.