Abstract:Large Language Models (LLMs) should refuse to answer questions beyond their knowledge. This capability, which we term knowledge-aware refusal, is crucial for factual reliability. However, existing metrics fail to faithfully measure this ability. On the one hand, simple refusal-based metrics are biased by refusal rates and yield inconsistent scores when models exhibit different refusal tendencies. On the other hand, existing calibration metrics are proxy-based, capturing the performance of auxiliary calibration processes rather than the model's actual refusal behavior. In this work, we propose the Refusal Index (RI), a principled metric that measures how accurately LLMs refuse questions they do not know. We define RI as Spearman's rank correlation between refusal probability and error probability. To make RI practically measurable, we design a lightweight two-pass evaluation method that efficiently estimates RI from observed refusal rates across two standard evaluation runs. Extensive experiments across 16 models and 5 datasets demonstrate that RI accurately quantifies a model's intrinsic knowledge-aware refusal capability in factual tasks. Notably, RI remains stable across different refusal rates and provides consistent model rankings independent of a model's overall accuracy and refusal rates. More importantly, RI provides insight into an important but previously overlooked aspect of LLM factuality: while LLMs achieve high accuracy on factual tasks, their refusal behavior can be unreliable and fragile. This finding highlights the need to complement traditional accuracy metrics with the Refusal Index for comprehensive factuality evaluation.
Abstract:Generative Artificial Intelligence (GenAI) has made significant advancements in fields such as computer vision (CV) and natural language processing (NLP), demonstrating its capability to synthesize high-fidelity data and improve generalization. Recently, there has been growing interest in integrating GenAI into wireless sensing systems. By leveraging generative techniques such as data augmentation, domain adaptation, and denoising, wireless sensing applications, including device localization, human activity recognition, and environmental monitoring, can be significantly improved. This survey investigates the convergence of GenAI and wireless sensing from two complementary perspectives. First, we explore how GenAI can be integrated into wireless sensing pipelines, focusing on two modes of integration: as a plugin to augment task-specific models and as a solver to directly address sensing tasks. Second, we analyze the characteristics of mainstream generative models, such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and diffusion models, and discuss their applicability and unique advantages across various wireless sensing tasks. We further identify key challenges in applying GenAI to wireless sensing and outline a future direction toward a wireless foundation model: a unified, pre-trained design capable of scalable, adaptable, and efficient signal understanding across diverse sensing tasks.
Abstract:Large Language Models (LLMs) have demonstrated impressive capabilities across various tasks, but fine-tuning them for domain-specific applications often requires substantial domain-specific data that may be distributed across multiple organizations. Federated Learning (FL) offers a privacy-preserving solution, but faces challenges with computational constraints when applied to LLMs. Low-Rank Adaptation (LoRA) has emerged as a parameter-efficient fine-tuning approach, though a single LoRA module often struggles with heterogeneous data across diverse domains. This paper addresses two critical challenges in federated LoRA fine-tuning: 1. determining the optimal number and allocation of LoRA experts across heterogeneous clients, and 2. enabling clients to selectively utilize these experts based on their specific data characteristics. We propose FedLEASE (Federated adaptive LoRA Expert Allocation and SElection), a novel framework that adaptively clusters clients based on representation similarity to allocate and train domain-specific LoRA experts. It also introduces an adaptive top-$M$ Mixture-of-Experts mechanism that allows each client to select the optimal number of utilized experts. Our extensive experiments on diverse benchmark datasets demonstrate that FedLEASE significantly outperforms existing federated fine-tuning approaches in heterogeneous client settings while maintaining communication efficiency.
Abstract:This paper studies the intelligent reflecting surface (IRS) deployment optimization problem for IRS-enabled integrated sensing and communications (ISAC) systems, in which multiple IRSs are strategically deployed at candidate locations to assist a base station (BS) to enhance the coverage of both sensing and communications. We present an environment-aware IRS deployment design via exploiting the channel knowledge map (CKM), which provides the channel state information (CSI) between each candidate IRS location and BS or targeted sensing/communication points. Based on the obtained CSI from CKM, we optimize the deployment of IRSs, jointly with the BS's transmit beamforming and IRSs' reflective beamforming during operation, with the objective of minimizing the system cost, while guaranteeing the minimum illumination power requirements at sensing areas and the minimum signal-to-noise ratio (SNR) requirements at communication areas. In particular, we consider two cases when the IRSs' reflective beamforming optimization can be implemented dynamically in real time and quasi-stationarily over the whole operation period, respectively. For both cases, the joint IRS deployment and transmit/reflective beamforming designs are formulated as mixed-integer non-convex optimization problems, which are solved via the successive convex approximation (SCA)-based relax-and-bound method. Specifically, we first relax the binary IRS deployment indicators into continuous variables, then find converged solutions via SCA, and finally round relaxed indicators back to binary values. Numerical results demonstrate the effectiveness of our proposed algorithms in reducing the system cost while meeting the sensing and communication requirements.
Abstract:Scientific Large Language Models (Sci-LLMs) are transforming how knowledge is represented, integrated, and applied in scientific research, yet their progress is shaped by the complex nature of scientific data. This survey presents a comprehensive, data-centric synthesis that reframes the development of Sci-LLMs as a co-evolution between models and their underlying data substrate. We formulate a unified taxonomy of scientific data and a hierarchical model of scientific knowledge, emphasizing the multimodal, cross-scale, and domain-specific challenges that differentiate scientific corpora from general natural language processing datasets. We systematically review recent Sci-LLMs, from general-purpose foundations to specialized models across diverse scientific disciplines, alongside an extensive analysis of over 270 pre-/post-training datasets, showing why Sci-LLMs pose distinct demands -- heterogeneous, multi-scale, uncertainty-laden corpora that require representations preserving domain invariance and enabling cross-modal reasoning. On evaluation, we examine over 190 benchmark datasets and trace a shift from static exams toward process- and discovery-oriented assessments with advanced evaluation protocols. These data-centric analyses highlight persistent issues in scientific data development and discuss emerging solutions involving semi-automated annotation pipelines and expert validation. Finally, we outline a paradigm shift toward closed-loop systems where autonomous agents based on Sci-LLMs actively experiment, validate, and contribute to a living, evolving knowledge base. Collectively, this work provides a roadmap for building trustworthy, continually evolving artificial intelligence (AI) systems that function as a true partner in accelerating scientific discovery.
Abstract:In this paper, we investigate a bistatic integrated sensing and communications (ISAC) system, consisting of a multi-antenna base station (BS), a multi-antenna sensing receiver, a single-antenna communication user (CU), and a point target to be sensed. Specifically, the BS transmits a superposition of Gaussian information and deterministic sensing signals. The BS aims to deliver information symbols to the CU, while the sensing receiver aims to estimate the target's direction-of-arrival (DoA) with respect to the sensing receiver by processing the echo signals. For the sensing receiver, we assume that only the sequences of the deterministic sensing signals and the covariance matrix of the information signals are perfectly known, whereas the specific realizations of the information signals remain unavailable. Under this setup, we first derive the corresponding Cram\'er-Rao bounds (CRBs) for DoA estimation and propose practical estimators to accurately estimate the target's DoA. Subsequently, we formulate the transmit beamforming design as an optimization problem aiming to minimize the CRB, subject to a minimum signal-to-interference-plus-noise ratio (SINR) requirement at the CU and a maximum transmit power constraint at the BS. When the BS employs only Gaussian information signals, the resulting beamforming optimization problem is convex, enabling the derivation of an optimal solution. In contrast, when both Gaussian information and deterministic sensing signals are transmitted, the resulting problem is non-convex and a locally optimal solution is acquired by exploiting successive convex approximation (SCA). Finally, numerical results demonstrate that employing Gaussian information signals leads to a notable performance degradation for target sensing and the proposed transmit beamforming design achieves a superior ISAC performance boundary compared with various benchmark schemes.
Abstract:Multivariate time series forecasting (MTSF) is a critical task with broad applications in domains such as meteorology, transportation, and economics. Nevertheless, pervasive missing values caused by sensor failures or human errors significantly degrade forecasting accuracy. Prior efforts usually employ an impute-then-forecast paradigm, leading to suboptimal predictions due to error accumulation and misaligned objectives between the two stages. To address this challenge, we propose the Collaborative Imputation-Forecasting Network (CoIFNet), a novel framework that unifies imputation and forecasting to achieve robust MTSF in the presence of missing values. Specifically, CoIFNet takes the observed values, mask matrix and timestamp embeddings as input, processing them sequentially through the Cross-Timestep Fusion (CTF) and Cross-Variate Fusion (CVF) modules to capture temporal dependencies that are robust to missing values. We provide theoretical justifications on how our CoIFNet learning objective improves the performance bound of MTSF with missing values. Through extensive experiments on challenging MSTF benchmarks, we demonstrate the effectiveness and computational efficiency of our proposed approach across diverse missing-data scenarios, e.g., CoIFNet outperforms the state-of-the-art method by $\underline{\textbf{24.40}}$% ($\underline{\textbf{23.81}}$%) at a point (block) missing rate of 0.6, while improving memory and time efficiency by $\underline{\boldsymbol{4.3\times}}$ and $\underline{\boldsymbol{2.1\times}}$, respectively.
Abstract:In this article, we introduce a novel low-altitude wireless network (LAWN), which is a reconfigurable, three-dimensional (3D) layered architecture. In particular, the LAWN integrates connectivity, sensing, control, and computing across aerial and terrestrial nodes that enable seamless operation in complex, dynamic, and mission-critical environments. In this article, we introduce a novel low-altitude wireless network (LAWN), which is a reconfigurable, three-dimensional (3D) layered architecture. Different from the conventional aerial communication systems, LAWN's distinctive feature is its tight integration of functional planes in which multiple functionalities continually reshape themselves to operate safely and efficiently in the low-altitude sky. With the LAWN, we discuss several enabling technologies, such as integrated sensing and communication (ISAC), semantic communication, and fully-actuated control systems. Finally, we identify potential applications and key cross-layer challenges. This article offers a comprehensive roadmap for future research and development in the low-altitude airspace.
Abstract:Low-altitude economy (LAE) represents an emerging economic paradigm that redefines commercial and social aerial activities. Large artificial intelligence models (LAIMs) offer transformative potential to further enhance the intelligence of LAE services. However, deploying LAIMs in LAE poses several challenges, including the significant gap between their computational/storage demands and the limited onboard resources of LAE entities, the mismatch between lab-trained LAIMs and dynamic physical environments, and the inefficiencies of traditional decoupled designs for sensing, communication, and computation. To address these issues, we first propose a hierarchical system architecture tailored for LAIM deployment and present representative LAE application scenarios. Next, we explore key enabling techniques that facilitate the mutual co-evolution of LAIMs and low-altitude systems, and introduce a task-oriented execution pipeline for scalable and adaptive service delivery. Then, the proposed framework is validated through real-world case studies. Finally, we outline open challenges to inspire future research.
Abstract:Multimodal Federated Learning (MFL) lies at the intersection of two pivotal research areas: leveraging complementary information from multiple modalities to improve downstream inference performance and enabling distributed training to enhance efficiency and preserve privacy. Despite the growing interest in MFL, there is currently no comprehensive taxonomy that organizes MFL through the lens of different Federated Learning (FL) paradigms. This perspective is important because multimodal data introduces distinct challenges across various FL settings. These challenges, including modality heterogeneity, privacy heterogeneity, and communication inefficiency, are fundamentally different from those encountered in traditional unimodal or non-FL scenarios. In this paper, we systematically examine MFL within the context of three major FL paradigms: horizontal FL (HFL), vertical FL (VFL), and hybrid FL. For each paradigm, we present the problem formulation, review representative training algorithms, and highlight the most prominent challenge introduced by multimodal data in distributed settings. We also discuss open challenges and provide insights for future research. By establishing this taxonomy, we aim to uncover the novel challenges posed by multimodal data from the perspective of different FL paradigms and to offer a new lens through which to understand and advance the development of MFL.