Abstract:Large language models (LLMs) have demonstrated potential in educational applications, yet their capacity to accurately assess the cognitive alignment of reading materials with students' developmental stages remains insufficiently explored. This gap is particularly critical given the foundational educational principle of the Zone of Proximal Development (ZPD), which emphasizes the need to match learning resources with Students' Cognitive Abilities (SCA). Despite the importance of this alignment, there is a notable absence of comprehensive studies investigating LLMs' ability to evaluate reading comprehension difficulty across different student age groups, especially in the context of Chinese language education. To fill this gap, we introduce ZPD-SCA, a novel benchmark specifically designed to assess stage-level Chinese reading comprehension difficulty. The benchmark is annotated by 60 Special Grade teachers, a group that represents the top 0.15% of all in-service teachers nationwide. Experimental results reveal that LLMs perform poorly in zero-shot learning scenarios, with Qwen-max and GLM even falling below the probability of random guessing. When provided with in-context examples, LLMs performance improves substantially, with some models achieving nearly double the accuracy of their zero-shot baselines. These results reveal that LLMs possess emerging abilities to assess reading difficulty, while also exposing limitations in their current training for educationally aligned judgment. Notably, even the best-performing models display systematic directional biases, suggesting difficulties in accurately aligning material difficulty with SCA. Furthermore, significant variations in model performance across different genres underscore the complexity of task. We envision that ZPD-SCA can provide a foundation for evaluating and improving LLMs in cognitively aligned educational applications.
Abstract:This article introduces a control-oriented low-altitude wireless network (LAWN) that integrates near-ground communications and remote estimation of the internal system state. This integration supports reliable networked control in dynamic aerial-ground environments. First, we introduce the network's modular architecture and key performance metrics. Then, we discuss core design trade-offs across the control, communication, and estimation layers. A case study illustrates closed-loop coordination under wireless constraints. Finally, we outline future directions for scalable, resilient LAWN deployments in real-time and resource-constrained scenarios.
Abstract:The rapid advancement of large language models (LLMs) has resulted in increasingly sophisticated AI-generated content, posing significant challenges in distinguishing LLM-generated text from human-written language. Existing detection methods, primarily based on lexical heuristics or fine-tuned classifiers, often suffer from limited generalizability and are vulnerable to paraphrasing, adversarial perturbations, and cross-domain shifts. In this work, we propose SentiDetect, a model-agnostic framework for detecting LLM-generated text by analyzing the divergence in sentiment distribution stability. Our method is motivated by the empirical observation that LLM outputs tend to exhibit emotionally consistent patterns, whereas human-written texts display greater emotional variability. To capture this phenomenon, we define two complementary metrics: sentiment distribution consistency and sentiment distribution preservation, which quantify stability under sentiment-altering and semantic-preserving transformations. We evaluate SentiDetect on five diverse datasets and a range of advanced LLMs,including Gemini-1.5-Pro, Claude-3, GPT-4-0613, and LLaMa-3.3. Experimental results demonstrate its superiority over state-of-the-art baselines, with over 16% and 11% F1 score improvements on Gemini-1.5-Pro and GPT-4-0613, respectively. Moreover, SentiDetect also shows greater robustness to paraphrasing, adversarial attacks, and text length variations, outperforming existing detectors in challenging scenarios.
Abstract:3D Gaussian Splatting (3DGS) has recently gained popularity in SLAM applications due to its fast rendering and high-fidelity representation. However, existing 3DGS-SLAM systems have predominantly focused on indoor environments and relied on active depth sensors, leaving a gap for large-scale outdoor applications. We present BGS-SLAM, the first binocular 3D Gaussian Splatting SLAM system designed for outdoor scenarios. Our approach uses only RGB stereo pairs without requiring LiDAR or active sensors. BGS-SLAM leverages depth estimates from pre-trained deep stereo networks to guide 3D Gaussian optimization with a multi-loss strategy enhancing both geometric consistency and visual quality. Experiments on multiple datasets demonstrate that BGS-SLAM achieves superior tracking accuracy and mapping performance compared to other 3DGS-based solutions in complex outdoor environments.
Abstract:Low-altitude wireless networks (LAWNs) have been envisioned as flexible and transformative platforms for enabling delay-sensitive control applications in Internet of Things (IoT) systems. In this work, we investigate the real-time wireless control over a LAWN system, where an aerial drone is employed to serve multiple mobile automated guided vehicles (AGVs) via finite blocklength (FBL) transmission. Toward this end, we adopt the model predictive control (MPC) to ensure accurate trajectory tracking, while we analyze the communication reliability using the outage probability. Subsequently, we formulate an optimization problem to jointly determine control policy, transmit power allocation, and drone trajectory by accounting for the maximum travel distance and control input constraints. To address the resultant non-convex optimization problem, we first derive the closed-form expression of the outage probability under FBL transmission. Based on this, we reformulate the original problem as a quadratic programming (QP) problem, followed by developing an alternating optimization (AO) framework. Specifically, we employ the projected gradient descent (PGD) method and the successive convex approximation (SCA) technique to achieve computationally efficient sub-optimal solutions. Furthermore, we thoroughly analyze the convergence and computational complexity of the proposed algorithm. Extensive simulations and AirSim-based experiments are conducted to validate the superiority of our proposed approach compared to the baseline schemes in terms of control performance.
Abstract:This paper investigates the system design and experimental validation of integrated sensing and communication (ISAC) for environmental sensing, which is expected to be a critical enabler for next-generation wireless networks. We advocate exploiting orthogonal time frequency space (OTFS) modulation for its inherent sparsity and stability in delay-Doppler (DD) domain channels, facilitating a low-overhead environment sensing design. Moreover, a comprehensive environmental sensing framework is developed, encompassing DD domain channel estimation, target localization, and experimental validation. In particular, we first explore the OTFS channel estimation in the presence of fractional delay and Doppler shifts. Given the estimated parameters, we propose a three-ellipse positioning algorithm to localize the target's position, followed by determining the mobile transmitter's velocity. Additionally, to evaluate the performance of our proposed design, we conduct extensive simulations and experiments using a software-defined radio (SDR)-based platform with universal software radio peripheral (USRP). The experimental validations demonstrate that our proposed approach outperforms the benchmarks in terms of localization accuracy and velocity estimation, confirming its effectiveness in practical environmental sensing applications.
Abstract:The rapid advancement of Internet of Things (IoT) services and the evolution toward the sixth generation (6G) have positioned unmanned aerial vehicles (UAVs) as critical enablers of low-altitude wireless networks (LAWNs). This work investigates the co-design of integrated sensing, communication, and control ($\mathbf{SC^{2}}$) for multi-UAV cooperative systems with finite blocklength (FBL) transmission. In particular, the UAVs continuously monitor the state of the field robots and transmit their observations to the robot controller to ensure stable control while cooperating to localize an unknown sensing target (ST). To this end, a weighted optimization problem is first formulated by jointly considering the control and localization performance in terms of the linear quadratic regulator (LQR) cost and the determinant of the Fisher information matrix (FIM), respectively. The resultant problem, optimizing resource allocations, the UAVs' deployment positions, and multi-user scheduling, is non-convex. To circumvent this challenge, we first derive a closed-form expression of the LQR cost with respect to other variables. Subsequently, the non-convex optimization problem is decomposed into a series of sub-problems by leveraging the alternating optimization (AO) approach, in which the difference of convex functions (DC) programming and projected gradient descent (PGD) method are employed to obtain an efficient near-optimal solution. Furthermore, the convergence and computational complexity of the proposed algorithm are thoroughly analyzed. Extensive simulation results are presented to validate the effectiveness of our proposed approach compared to the benchmark schemes and reveal the trade-off between control and sensing performance.
Abstract:In the era of foundation models, Out-of- Distribution (OOD) problems, i.e., the data discrepancy between the training environments and testing environments, hinder AI generalization. Further, relational data like graphs disobeying the Independent and Identically Distributed (IID) condition makes the problem more challenging, especially much harder when it is associated with time. Motivated by this, to realize the robust invariant learning over temporal graphs, we want to investigate what components in temporal graphs are most invariant and representative with respect to labels. With the Information Bottleneck (IB) method, we propose an error-bounded Invariant Link Selector that can distinguish invariant components and variant components during the training process to make the deep learning model generalizable for different testing scenarios. Besides deriving a series of rigorous generalizable optimization functions, we also equip the training with task-specific loss functions, e.g., temporal link prediction, to make pretrained models solve real-world application tasks like citation recommendation and merchandise recommendation, as demonstrated in our experiments with state-of-the-art (SOTA) methods. Our code is available at https://github.com/kthrn22/OOD-Linker.
Abstract:Large Language Models (LLMs) have achieved remarkable success in complex reasoning tasks, but their inference remains computationally inefficient. We observe a common failure mode in many prevalent LLMs, overthinking, where models generate verbose and tangential reasoning traces even for simple queries. Recent works have tried to mitigate this by enforcing fixed token budgets, however, this can lead to underthinking, especially on harder problems. Through empirical analysis, we identify that this inefficiency often stems from unclear problem-solving strategies. To formalize this, we develop a theoretical model, BBAM (Bayesian Budget Allocation Model), which models reasoning as a sequence of sub-questions with varying uncertainty, and introduce the $E^3$ metric to capture the trade-off between correctness and computation efficiency. Building on theoretical results from BBAM, we propose Plan-and-Budget, a model-agnostic, test-time framework that decomposes complex queries into sub-questions and allocates token budgets based on estimated complexity using adaptive scheduling. Plan-and-Budget improves reasoning efficiency across a range of tasks and models, achieving up to +70% accuracy gains, -39% token reduction, and +187.5% improvement in $E^3$. Notably, it elevates a smaller model (DS-Qwen-32B) to match the efficiency of a larger model (DS-LLaMA-70B)-demonstrating Plan-and-Budget's ability to close performance gaps without retraining. Our code is available at anonymous.4open.science/r/P-and-B-6513/.
Abstract:Direct Preference Optimization (DPO) is broadly utilized for aligning Large Language Models (LLMs) with human values because of its flexibility. Despite its effectiveness, it has been observed that the capability of DPO to generate human-preferred response is limited and the results of DPO are far from resilient. To address these limitations, in this paper we propose a novel Self-Guided Direct Preference Optimization algorithm, i.e., SGDPO, which incorporates a pilot term to steer the gradient flow during the optimization process, allowing for fine-grained control over the updates of chosen and rejected rewards. We provide a detailed theoretical analysis of our proposed method and elucidate its operational mechanism. Furthermore, we conduct comprehensive experiments on various models and benchmarks. The extensive experimental results demonstrate the consistency between the empirical results and our theoretical analysis and confirm the effectiveness of our proposed approach (up to 9.19% higher score).