Abstract:Traditional channel acquisition faces significant limitations due to ideal model assumptions and scalability challenges. A novel environment-aware paradigm, known as channel twinning, tackles these issues by constructing radio propagation environment semantics using a data-driven approach. In the spotlight of channel twinning technology, a radio map is recognized as an effective region-specific model for learning the spatial distribution of channel information. However, most studies focus on static channel map construction, with only a few collecting numerous channel samples and using deep learning for radio map prediction. In this paper, we develop a novel dynamic radio map twinning framework with a substantially small dataset. Specifically, we present an innovative approach that employs dynamic mode decomposition (DMD) to model the evolution of the dynamic channel gain map as a dynamical system. We first interpret dynamic channel gain maps as spatio-temporal video stream data. The coarse-grained and fine-grained evolving modes are extracted from the stream data using a new ensemble DMD (Ens-DMD) algorithm. To mitigate the impact of noisy data, we design a median-based threshold mask technique to filter the noise artifacts of the twin maps. With the proposed DMD-based radio map twinning framework, numerical results are provided to demonstrate the low-complexity reproduction and evolution of the channel gain maps. Furthermore, we consider four radio map twin performance metrics to confirm the superiority of our framework compared to the baselines.
Abstract:EdgeIoT represents an approach that brings together mobile edge computing with Internet of Things (IoT) devices, allowing for data processing close to the data source. Sending source data to a server is bandwidth-intensive and may compromise privacy. Instead, federated learning allows each device to upload a shared machine-learning model update with locally processed data. However, this technique, which depends on aggregating model updates from various IoT devices, is vulnerable to attacks from malicious entities that may inject harmful data into the learning process. This paper introduces a new attack method targeting federated learning in EdgeIoT, known as data-independent model manipulation attack. This attack does not rely on training data from the IoT devices but instead uses an adversarial variational graph auto-encoder (AV-GAE) to create malicious model updates by analyzing benign model updates intercepted during communication. AV-GAE identifies and exploits structural relationships between benign models and their training data features. By manipulating these structural correlations, the attack maximizes the training loss of the federated learning system, compromising its overall effectiveness.
Abstract:Error detection (ED) in tabular data is crucial yet challenging due to diverse error types and the need for contextual understanding. Traditional ED methods often rely heavily on manual criteria and labels, making them labor-intensive. Large language models (LLM) can minimize human effort but struggle with errors requiring a comprehensive understanding of data context. In this paper, we propose ZeroED, a novel hybrid zero-shot error detection framework, which combines LLM reasoning ability with the manual label-based ED pipeline. ZeroED operates in four steps, i.e., feature representation, error labeling, training data construction, and detector training. Initially, to enhance error distinction, ZeroED generates rich data representations using error reason-aware binary features, pre-trained embeddings, and statistical features. Then, ZeroED employs LLM to label errors holistically through in-context learning, guided by a two-step reasoning process for detailed error detection guidelines. To reduce token costs, LLMs are applied only to representative data selected via clustering-based sampling. High-quality training data is constructed through in-cluster label propagation and LLM augmentation with verification. Finally, a classifier is trained to detect all errors. Extensive experiments on seven public datasets demonstrate that, ZeroED substantially outperforms state-of-the-art methods by a maximum 30% improvement in F1 score and up to 90% token cost reduction.
Abstract:This paper presents a new Large Language Model (LLM)-based Smart Device Management framework, a pioneering approach designed to address the intricate challenges of managing intelligent devices within public facilities, with a particular emphasis on applications to libraries. Our framework leverages state-of-the-art LLMs to analyze and predict device failures, thereby enhancing operational efficiency and reliability. Through prototype validation in real-world library settings, we demonstrate the framework's practical applicability and its capacity to significantly reduce budgetary constraints on public facilities. The advanced and innovative nature of our model is evident from its successful implementation in prototype testing. We plan to extend the framework's scope to include a wider array of public facilities and to integrate it with cutting-edge cybersecurity technologies, such as Internet of Things (IoT) security and machine learning algorithms for threat detection and response. This will result in a comprehensive and proactive maintenance system that not only bolsters the security of intelligent devices but also utilizes machine learning for automated analysis and real-time threat mitigation. By incorporating these advanced cybersecurity elements, our framework will be well-positioned to tackle the dynamic challenges of modern public infrastructure, ensuring robust protection against potential threats and enabling facilities to anticipate and prevent failures, leading to substantial cost savings and enhanced service quality.
Abstract:Multi-task semantic communication can serve multiple learning tasks using a shared encoder model. Existing models have overlooked the intricate relationships between features extracted during an encoding process of tasks. This paper presents a new graph attention inter-block (GAI) module to the encoder/transmitter of a multi-task semantic communication system, which enriches the features for multiple tasks by embedding the intermediate outputs of encoding in the features, compared to the existing techniques. The key idea is that we interpret the outputs of the intermediate feature extraction blocks of the encoder as the nodes of a graph to capture the correlations of the intermediate features. Another important aspect is that we refine the node representation using a graph attention mechanism to extract the correlations and a multi-layer perceptron network to associate the node representations with different tasks. Consequently, the intermediate features are weighted and embedded into the features transmitted for executing multiple tasks at the receiver. Experiments demonstrate that the proposed model surpasses the most competitive and publicly available models by 11.4% on the CityScapes 2Task dataset and outperforms the established state-of-the-art by 3.97% on the NYU V2 3Task dataset, respectively, when the bandwidth ratio of the communication channel (i.e., compression level for transmission over the channel) is as constrained as 1 12 .
Abstract:Data sharing is a prerequisite for collaborative innovation, enabling organizations to leverage diverse datasets for deeper insights. In real-world applications like FinTech and Smart Manufacturing, transactional data, often in tabular form, are generated and analyzed for insight generation. However, such datasets typically contain sensitive personal/business information, raising privacy concerns and regulatory risks. Data synthesis tackles this by generating artificial datasets that preserve the statistical characteristics of real data, removing direct links to individuals. However, attackers can still infer sensitive information using background knowledge. Differential privacy offers a solution by providing provable and quantifiable privacy protection. Consequently, differentially private data synthesis has emerged as a promising approach to privacy-aware data sharing. This paper provides a comprehensive overview of existing differentially private tabular data synthesis methods, highlighting the unique challenges of each generation model for generating tabular data under differential privacy constraints. We classify the methods into statistical and deep learning-based approaches based on their generation models, discussing them in both centralized and distributed environments. We evaluate and compare those methods within each category, highlighting their strengths and weaknesses in terms of utility, privacy, and computational complexity. Additionally, we present and discuss various evaluation methods for assessing the quality of the synthesized data, identify research gaps in the field and directions for future research.
Abstract:This letter puts forth a new hybrid horizontal-vertical federated learning (HoVeFL) for mobile edge computing-enabled Internet of Things (EdgeIoT). In this framework, certain EdgeIoT devices train local models using the same data samples but analyze disparate data features, while the others focus on the same features using non-independent and identically distributed (non-IID) data samples. Thus, even though the data features are consistent, the data samples vary across devices. The proposed HoVeFL formulates the training of local and global models to minimize the global loss function. Performance evaluations on CIFAR-10 and SVHN datasets reveal that the testing loss of HoVeFL with 12 horizontal FL devices and six vertical FL devices is 5.5% and 25.2% higher, respectively, compared to a setup with six horizontal FL devices and 12 vertical FL devices.
Abstract:Rapid advances in Machine Learning (ML) have triggered new trends in Autonomous Vehicles (AVs). ML algorithms play a crucial role in interpreting sensor data, predicting potential hazards, and optimizing navigation strategies. However, achieving full autonomy in cluttered and complex situations, such as intricate intersections, diverse sceneries, varied trajectories, and complex missions, is still challenging, and the cost of data labeling remains a significant bottleneck. The adaptability and robustness of humans in complex scenarios motivate the inclusion of humans in ML process, leveraging their creativity, ethical power, and emotional intelligence to improve ML effectiveness. The scientific community knows this approach as Human-In-The-Loop Machine Learning (HITL-ML). Towards safe and ethical autonomy, we present a review of HITL-ML for AVs, focusing on Curriculum Learning (CL), Human-In-The-Loop Reinforcement Learning (HITL-RL), Active Learning (AL), and ethical principles. In CL, human experts systematically train ML models by starting with simple tasks and gradually progressing to more difficult ones. HITL-RL significantly enhances the RL process by incorporating human input through techniques like reward shaping, action injection, and interactive learning. AL streamlines the annotation process by targeting specific instances that need to be labeled with human oversight, reducing the overall time and cost associated with training. Ethical principles must be embedded in AVs to align their behavior with societal values and norms. In addition, we provide insights and specify future research directions.
Abstract:As the primary standard protocol for modern cars, the Controller Area Network (CAN) is a critical research target for automotive cybersecurity threats and autonomous applications. As the decoding specification of CAN is a proprietary black-box maintained by Original Equipment Manufacturers (OEMs), conducting related research and industry developments can be challenging without a comprehensive understanding of the meaning of CAN messages. In this paper, we propose a fully automated reverse-engineering system, named ByCAN, to reverse engineer CAN messages. ByCAN outperforms existing research by introducing byte-level clusters and integrating multiple features at both byte and bit levels. ByCAN employs the clustering and template matching algorithms to automatically decode the specifications of CAN frames without the need for prior knowledge. Experimental results demonstrate that ByCAN achieves high accuracy in slicing and labeling performance, i.e., the identification of CAN signal boundaries and labels. In the experiments, ByCAN achieves slicing accuracy of 80.21%, slicing coverage of 95.21%, and labeling accuracy of 68.72% for general labels when analyzing the real-world CAN frames.
Abstract:Unlearning in various learning frameworks remains challenging, with the continuous growth and updates of models exhibiting complex inheritance relationships. This paper presents a novel unlearning framework, which enables fully parallel unlearning among models exhibiting inheritance. A key enabler is the new Unified Model Inheritance Graph (UMIG), which captures the inheritance using a Directed Acyclic Graph (DAG).Central to our framework is the new Fisher Inheritance Unlearning (FIUn) algorithm, which utilizes the Fisher Information Matrix (FIM) from initial unlearning models to pinpoint impacted parameters in inherited models. By employing FIM, the FIUn method breaks the sequential dependencies among the models, facilitating simultaneous unlearning and reducing computational overhead. We further design to merge disparate FIMs into a single matrix, synchronizing updates across inherited models. Experiments confirm the effectiveness of our unlearning framework. For single-class tasks, it achieves complete unlearning with 0\% accuracy for unlearned labels while maintaining 94.53\% accuracy for retained labels on average. For multi-class tasks, the accuracy is 1.07\% for unlearned labels and 84.77\% for retained labels on average. Our framework accelerates unlearning by 99\% compared to alternative methods.