Abstract:As the demand for ubiquitous connectivity and high-precision environmental awareness grows, integrated sensing and communication (ISAC) has emerged as a key technology for sixth-generation (6G) wireless networks. Intelligent metasurfaces (IMs) have also been widely adopted in ISAC scenarios due to their efficient, programmable control over electromagnetic waves. This provides a versatile solution that meets the dual-function requirements of next-generation networks. Although reconfigurable intelligent surfaces (RISs) have been extensively studied for manipulating the propagation channel between base and mobile stations, the full potential of IMs in ISAC transceiver design remains under-explored. Against this backdrop, this article explores emerging IM-enabled transceiver designs for ISAC systems. It begins with an overview of representative IM architectures, their unique principles, and their inherent advantages in EM wave manipulation. Next, a unified ISAC framework is established to systematically model the design and derivation of diverse IM-enabled transceiver structures. This lays the foundation for performance optimization, trade-offs, and analysis. The paper then discusses several critical technologies for IM-enabled ISAC transceivers, including dedicated channel modeling, effective channel estimation, tailored beamforming strategies, and dual-functional waveform design.
Abstract:Pinching antennas have emerged as a promising technology for reconfiguring wireless propagation environments, particularly in high-frequency communication systems operating in the millimeter-wave and terahertz bands. By enabling dynamic activation at arbitrary positions along a dielectric waveguide, pinching antennas offer unprecedented channel reconfigurability and the ability to provide line-of-sight (LoS) links in scenarios with severe LoS blockages. The performance of pinching-antenna systems is highly dependent on the optimized placement of the pinching antennas, which must be jointly considered with traditional resource allocation (RA) variables -- including transmission power, time slots, and subcarriers. The resulting joint RA problems are typically non-convex with complex variable coupling, necessitating sophisticated optimization techniques. This article provides a comprehensive survey of existing RA algorithms designed for pinching-antenna systems, supported by numerical case studies that demonstrate their potential performance gains. Key challenges and open research problems are also identified to guide future developments in this emerging field.
Abstract:Cognitive radio rate-splitting multiple access (CR-RSMA) has emerged as a promising multiple access framework that can efficiently manage interference and adapt dynamically to heterogeneous quality-of-service (QoS) requirements. To effectively support such demanding access schemes, programmable wireless environments have attracted considerable attention, especially through simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs), which can enable full-space control of signal propagation in asymmetric user deployments. In this paper, we propose the cognitive radio (CR) functionality for STAR-RIS-assisted CR-RSMA systems, leveraging the unique capability of the STAR-RIS to combine element and power splitting for adaptive control of transmission and reflection in CR scenarios. Specifically, the proposed CR functionality partitions the STAR-RIS into two regions independently controlling the transmission and reflection of signals, simultaneously ensuring the required QoS for the primary user and enhancing the performance of the secondary user. To accurately characterize the system performance, we derive analytical expressions for the ergodic rate of the secondary user and the outage rate of the primary user under Nakagami-m fading. Finally, simulation results show that the proposed approach effectively manages interference, guarantees the QoS of the primary user, and significantly improves the throughput of the secondary user, highlighting STAR-RIS as an efficient solution for CR-RSMA-based services.
Abstract:This paper characterizes the impacts of channel estimation errors and Rician factors on achievable data rate and investigates the user scheduling strategy, combining scheme, power control, and dynamic bandwidth allocation to maximize the sum data rate in the distributed multiple-input-multiple-output (MIMO)-enabled low earth orbit (LEO) satellite networks. However, due to the resource-assignment problem, it is challenging to find the optimal solution for maximizing the sum data rate. To transform this problem into a more tractable form, we first quantify the channel estimation errors based on the minimum mean square error (MMSE) estimator and rigorously derive a closed-form lower bound of the achievable data rate, offering an explicit formulation for resource allocation. Then, to solve the NP-hard problem, we decompose it into three sub-problems, namely, user scheduling strategy, joint combination and power control, and dynamic bandwidth allocation, by using alternative optimization (AO). Specifically, the user scheduling is formulated as a graph coloring problem by iteratively updating an undirected graph based on user requirements, which is then solved using the DSatur algorithm. For the combining weights and power control, the successive convex approximation (SCA) and geometrical programming (GP) are adopted to obtain the sub-optimal solution with lower complexity. Finally, the optimal bandwidth allocation can be achieved by solving the concave problem. Numerical results validate the analytical tightness of the derived bound, especially for large Rician factors, and demonstrate significant performance gains over other benchmarks.
Abstract:Pinching-antenna (PA) systems route millimeter wave (mmWave) signals through a leaky waveguide and radiate them at "pinch" apertures, offering low-cost line-of-sight (LoS) coverage. However, when multiple PAs serve multiple users simultaneously, the downlink channel becomes strongly frequency-selective, creating inter-symbol interference (ISI) that existing single-carrier designs overlook. This paper models the overall channel as a finite impulse response (FIR) filter, characterizes its frequency selectivity, and explicitly accounts for the resulting ISI. To overcome ISI, we introduce an orthogonal frequency-division multiple access (OFDMA)-based framework and formulate a max-min resource-allocation problem to achieve user fairness. A lightweight two-stage heuristic-greedy subcarrier assignment, followed by per-user water-filling, achieves near-optimal fairness with polynomial complexity. Simulation results for an indoor layout demonstrate that the proposed scheme notably increases the minimum user rate compared to time-division single-carrier baselines and remains robust under moderate LoS blockage.
Abstract:This paper introduces Elliptic Curve Modulation (ECM), a novel modulation scheme that can be leveraged to effectively shuffle transmitted data while maintaining symbol error probability (SEP) performance equivalent to unencrypted systems. By utilizing the well-distributed elliptic curve points over the field of large primes, ECM enhances symbol obfuscation, making it a powerful foundation for physical-layer encryption (PLE). Each symbol is mapped from a predefined key while preserving a minimum Euclidean distance constraint, ensuring strong security against adversarial inference without compromising error performance. Building on ECM's strong obfuscation capabilities, we propose ECM with dynamic rotation (ECM-DR) as a practical PLE scheme that achieves near-maximal obfuscation while balancing precomputation complexity. By leveraging a reduced subset of precomputed elliptic curve points and key-based dynamic constellation rotation, ECM-DR ensures that each transmission remains unpredictable, significantly enhancing security compared to traditional PLE schemes without additional computational cost. Security analysis confirms ECM's resilience to brute-force attacks, while numerical results demonstrate its strong obfuscation capabilities. Furthermore, ECM-DR achieves near-maximum information entropy while preserving the SEP performance of unencrypted quadrature amplitude modulation (QAM), offering an extremely robust solution for secure wireless communications.
Abstract:This letter introduces a novel wireless powered communication system, referred to as a wireless powered pinching-antenna network (WPPAN), utilizing a single waveguide with pinching antennas to address the double near-far problem inherent in wireless powered networks. In the proposed WPPAN, users harvest energy from spatially distributed pinching antennas in the downlink and use the collected power to transmit messages in the uplink. Furthermore, to manage the combinatorial complexity associated with activating the pinching antennas, we propose three approaches of varying complexity to simplify the original resource allocation problem and then solve it efficiently using convex optimization methods. Simulation results confirm that the proposed WPPAN system effectively mitigates the double near-far problem by providing antenna resources closer to the users, thereby enhancing both downlink energy harvesting and uplink data transmission.
Abstract:Pinching antennas, as a novel flexible-antenna technology capable of establishing line of sight (LoS) connections and effectively mitigating large-scale path loss, have recently attracted considerable research interests. However, the implementation of ideal pinching-antenna systems involves determining and adjusting pinching antennas to an arbitrary position on waveguides, which presents challenges to both practical deployment and related optimization. This paper investigates a practical pinching-antennas system in multi-waveguide scenarios, where pinching antennas are installed at pre-configured discrete positions to serve downlink users with non-orthogonal multiple access (NOMA). To improve system throughput, a sophisticated optimization problem is formulated by jointly considering waveguide assignment, antenna activation, successive interference cancellation (SIC) decoding order design, and power allocation. By treating waveguide assignment and antenna activation as two coalition-formation games, a novel game-theoretic algorithm is developed, in which the optimal decoding order is derived and incorporated. For power allocation, monotonic optimization and successive convex approximation (SCA) are employed to construct global optimal and low-complexity solutions, respectively. Simulation results demonstrate that the NOMA-based pinching-antenna system exhibits superior performance compared to the considered benchmark systems, and the proposed solutions provide significant improvement in terms of sum rate and outage probability.
Abstract:Pinching-antenna systems (PASs) have recently emerged as a flexible, cost-effective route to large-scale antenna deployments envisioned for integrated sensing and communications (ISAC). This paper establishes the fundamental sensing limits of a bistatic PAS link by deriving closed-form Cram\'er-Rao lower bounds for the joint estimation of range and direction when a target is illuminated by pinching antennas placed along a dielectric waveguide and observed by a uniform linear array receiver. By rigorously preserving the amplitude and phase variations of each pinching antenna, as well as exploiting their non-uniform deployment, we gain valuable insights into the performance gain of PASs over conventional antenna arrays. Numerical results validate that the PAS-based ISAC can achieve centimeter-level ranging and sub-degree angular resolution with significantly fewer hardware resources than conventional uniform linear arrays. The derived bounds provide practical design guidelines for next-generation PAS-enabled ISAC systems.
Abstract:Security is emerging as a critical performance metric for next-generation wireless networks, but conventional multiple-input-multiple-output (MIMO) systems often suffer from severe path loss and are vulnerable to nearby eavesdroppers due to their fixed-antenna configurations. Pinching-antenna systems (PAS) offer a promising alternative, leveraging reconfigurable pinching antennas (PAs) positioned along low-loss dielectric waveguides to enhance channel conditions and dynamically mitigate security threats. In this paper, we propose an artificial noise (AN)-based beamforming scheme for downlink transmissions in PAS, with the goal of maximizing the secrecy rate. A closed-form solution is derived for the single-waveguide scenario, while an alternating optimization approach addresses more complex multiple waveguide setups. Numerical results show that the proposed scheme significantly outperforms conventional MIMO and existing PAS security schemes.