Human parsing is the process of identifying, segmenting, and categorizing different parts of a human body in an image or video such as head, shoulders, knees, and toes.
Reasoning-focused Question Answering (QA) has advanced rapidly with Large Language Models (LLMs), yet high-quality benchmarks for low-resource languages remain scarce. Persian, spoken by roughly 130 million people, lacks a comprehensive open-domain resource for evaluating reasoning-capable QA systems. We introduce PARSE, the first open-domain Persian reasoning QA benchmark, containing 10,800 questions across Boolean, multiple-choice, and factoid formats, with diverse reasoning types, difficulty levels, and answer structures. The benchmark is built via a controlled LLM-based generation pipeline and validated through human evaluation. We also ensure linguistic and factual quality through multi-stage filtering, annotation, and consistency checks. We benchmark multilingual and Persian LLMs under multiple prompting strategies and show that Persian prompts and structured prompting (CoT for Boolean/multiple-choice; few-shot for factoid) improve performance. Fine-tuning further boosts results, especially for Persian-specialized models. These findings highlight how PARSE supports both fair comparison and practical model adaptation. PARSE fills a critical gap in Persian QA research and provides a strong foundation for developing and evaluating reasoning-capable LLMs in low-resource settings.
The integration of Large Language Models (LLMs) into network operations (AIOps) is hindered by two fundamental challenges: the stochastic grounding problem, where LLMs struggle to reliably parse unstructured, vendor-specific CLI output, and the security gap of granting autonomous agents shell access. This paper introduces MCP-Diag, a hybrid neuro-symbolic architecture built upon the Model Context Protocol (MCP). We propose a deterministic translation layer that converts raw stdout from canonical utilities (dig, ping, traceroute) into rigorous JSON schemas before AI ingestion. We further introduce a mandatory "Elicitation Loop" that enforces Human-in-the-Loop (HITL) authorization at the protocol level. Our preliminary evaluation demonstrates that MCP-Diag achieving 100% entity extraction accuracy with less than 0.9% execution latency overhead and 3.7x increase in context token usage.
In recent years, multimodal image editing models have achieved substantial progress, enabling users to manipulate visual content through natural language in a flexible and interactive manner. Nevertheless, an important yet insufficiently explored research direction remains visual document image editing, which involves modifying textual content within images while faithfully preserving the original text style and background context. Existing approaches, including AnyText, GlyphControl, and TextCtrl, predominantly focus on English-language scenarios and documents with relatively sparse textual layouts, thereby failing to adequately address dense, structurally complex documents or non-Latin scripts such as Chinese. To bridge this gap, we propose \textbf{V}isual \textbf{D}oc \textbf{E}dit Bench(VDE Bench), a rigorously human-annotated and evaluated benchmark specifically designed to assess image editing models on multilingual and complex visual document editing tasks. The benchmark comprises a high-quality dataset encompassing densely textual documents in both English and Chinese, including academic papers, posters, presentation slides, examination materials, and newspapers. Furthermore, we introduce a decoupled evaluation framework that systematically quantifies editing performance at the OCR parsing level, enabling fine-grained assessment of text modification accuracy. Based on this benchmark, we conduct a comprehensive evaluation of representative state-of-the-art image editing models. Manual verification demonstrates a strong consistency between human judgments and automated evaluation metrics. VDE Bench constitutes the first systematic benchmark for evaluating image editing models on multilingual and densely textual visual documents.
Recent advances in fMRI-based image reconstruction have achieved remarkable photo-realistic fidelity. Yet, a persistent limitation remains: while reconstructed images often appear naturalistic and holistically similar to the target stimuli, they frequently suffer from severe semantic misalignment -- salient objects are often replaced or hallucinated despite high visual quality. In this work, we address this limitation by rethinking the role of explicit semantic interpretation in fMRI decoding. We argue that existing methods rely too heavily on entangled visual embeddings which prioritize low-level appearance cues -- such as texture and global gist -- over explicit semantic identity. To overcome this, we parse fMRI signals into rich, sentence-level semantic descriptions that mirror the hierarchical and compositional nature of human visual understanding. We achieve this by leveraging grounded VLMs to generate synthetic, human-like, multi-granularity textual representations that capture object identities and spatial organization. Built upon this foundation, we propose SynMind, a framework that integrates these explicit semantic encodings with visual priors to condition a pretrained diffusion model. Extensive experiments demonstrate that SynMind outperforms state-of-the-art methods across most quantitative metrics. Notably, by offloading semantic reasoning to our text-alignment module, SynMind surpasses competing methods based on SDXL while using the much smaller Stable Diffusion 1.4 and a single consumer GPU. Large-scale human evaluations further confirm that SynMind produces reconstructions more consistent with human visual perception. Neurovisualization analyses reveal that SynMind engages broader and more semantically relevant brain regions, mitigating the over-reliance on high-level visual areas.
Multimodal Large Language Models (MLLMs) can directly consume exam documents, threatening conventional assessments and academic integrity. We present DoPE (Decoy-Oriented Perturbation Encapsulation), a document-layer defense framework that embeds semantic decoys into PDF/HTML assessments to exploit render-parse discrepancies in MLLM pipelines. By instrumenting exams at authoring time, DoPE provides model-agnostic prevention (stop or confound automated solving) and detection (flag blind AI reliance) without relying on conventional one-shot classifiers. We formalize prevention and detection tasks, and introduce FewSoRT-Q, an LLM-guided pipeline that generates question-level semantic decoys and FewSoRT-D to encapsulate them into watermarked documents. We evaluate on Integrity-Bench, a novel benchmark of 1826 exams (PDF+HTML) derived from public QA datasets and OpenCourseWare. Against black-box MLLMs from OpenAI and Anthropic, DoPE yields strong empirical gains: a 91.4% detection rate at an 8.7% false-positive rate using an LLM-as-Judge verifier, and prevents successful completion or induces decoy-aligned failures in 96.3% of attempts. We release Integrity-Bench, our toolkit, and evaluation code to enable reproducible study of document-layer defenses for academic integrity.
Graphical User Interfaces (GUIs) are central to human-computer interaction, yet automating complex GUI tasks remains a major challenge for autonomous agents, largely due to a lack of scalable, high-quality training data. While recordings of human demonstrations offer a rich data source, they are typically long, unstructured, and lack annotations, making them difficult for agents to learn from.To address this, we introduce ShowUI-Aloha, a comprehensive pipeline that transforms unstructured, in-the-wild human screen recordings from desktop environments into structured, actionable tasks. Our framework includes four key components: A recorder that captures screen video along with precise user interactions like mouse clicks, keystrokes, and scrolls. A learner that semantically interprets these raw interactions and the surrounding visual context, translating them into descriptive natural language captions. A planner that reads the parsed demonstrations, maintains task states, and dynamically formulates the next high-level action plan based on contextual reasoning. An executor that faithfully carries out these action plans at the OS level, performing precise clicks, drags, text inputs, and window operations with safety checks and real-time feedback. Together, these components provide a scalable solution for collecting and parsing real-world human data, demonstrating a viable path toward building general-purpose GUI agents that can learn effectively from simply observing humans.
Competitive sports require sophisticated tactical analysis, yet combat disciplines like boxing remain underdeveloped in AI-driven analytics due to the complexity of action dynamics and the lack of structured tactical representations. To address this, we present BoxMind, a closed-loop AI expert system validated in elite boxing competition. By defining atomic punch events with precise temporal boundaries and spatial and technical attributes, we parse match footage into 18 hierarchical technical-tactical indicators. We then propose a graph-based predictive model that fuses these explicit technical-tactical profiles with learnable, time-variant latent embeddings to capture the dynamics of boxer matchups. Modeling match outcome as a differentiable function of technical-tactical indicators, we turn winning probability gradients into executable tactical adjustments. Experiments show that the outcome prediction model achieves state-of-the-art performance, with 69.8% accuracy on BoxerGraph test set and 87.5% on Olympic matches. Using this predictive model as a foundation, the system generates strategic recommendations that demonstrate proficiency comparable to human experts. BoxMind is validated through a closed-loop deployment during the 2024 Paris Olympics, directly contributing to the Chinese National Team's historic achievement of three gold and two silver medals. BoxMind establishes a replicable paradigm for transforming unstructured video data into strategic intelligence, bridging the gap between computer vision and decision support in competitive sports.
Large language models increasingly require structured inference, from JSON schema enforcement to multi-lingual parsing, where outputs must satisfy complex constraints. We introduce MetaJuLS, a meta-reinforcement learning approach that learns universal constraint propagation policies applicable across languages and tasks without task-specific retraining. By formulating structured inference as adaptive constraint propagation and training a Graph Attention Network with meta-learning, MetaJuLS achieves 1.5--2.0$\times$ speedups over GPU-optimized baselines while maintaining within 0.2\% accuracy of state-of-the-art parsers. On Universal Dependencies across 10 languages and LLM-constrained generation (LogicBench, GSM8K-Constrained), MetaJuLS demonstrates rapid cross-domain adaptation: a policy trained on English parsing adapts to new languages and tasks with 5--10 gradient steps (5--15 seconds) rather than requiring hours of task-specific training. Mechanistic analysis reveals the policy discovers human-like parsing strategies (easy-first) and novel non-intuitive heuristics. By reducing propagation steps in LLM deployments, MetaJuLS contributes to Green AI by directly reducing inference carbon footprint.
Visual Reasoning CAPTCHAs (VRCs) combine visual scenes with natural-language queries that demand compositional inference over objects, attributes, and spatial relations. They are increasingly deployed as a primary defense against automated bots. Existing solvers fall into two paradigms: vision-centric, which rely on template-specific detectors but fail on novel layouts, and reasoning-centric, which leverage LLMs but struggle with fine-grained visual perception. Both lack the generality needed to handle heterogeneous VRC deployments. We present ViPer, a unified attack framework that integrates structured multi-object visual perception with adaptive LLM-based reasoning. ViPer parses visual layouts, grounds attributes to question semantics, and infers target coordinates within a modular pipeline. Evaluated on six major VRC providers (VTT, Geetest, NetEase, Dingxiang, Shumei, Xiaodun), ViPer achieves up to 93.2% success, approaching human-level performance across multiple benchmarks. Compared to prior solvers, GraphNet (83.2%), Oedipus (65.8%), and the Holistic approach (89.5%), ViPer consistently outperforms all baselines. The framework further maintains robustness across alternative LLM backbones (GPT, Grok, DeepSeek, Kimi), sustaining accuracy above 90%. To anticipate defense, we further introduce Template-Space Randomization (TSR), a lightweight strategy that perturbs linguistic templates without altering task semantics. TSR measurably reduces solver (i.e., attacker) performance. Our proposed design suggests directions for human-solvable but machine-resistant CAPTCHAs.
PDFs are the second-most used document type on the internet (after HTML). Yet, existing QA datasets commonly start from text sources or only address specific domains. In this paper, we present pdfQA, a multi-domain 2K human-annotated (real-pdfQA) and 2K synthetic dataset (syn-pdfQA) differentiating QA pairs in ten complexity dimensions (e.g., file type, source modality, source position, answer type). We apply and evaluate quality and difficulty filters on both datasets, obtaining valid and challenging QA pairs. We answer the questions with open-source LLMs, revealing existing challenges that correlate with our complexity dimensions. pdfQA presents a basis for end-to-end QA pipeline evaluation, testing diverse skill sets and local optimizations (e.g., in information retrieval or parsing).