Topic:Domain Generalization
What is Domain Generalization? Domain generalization is the process of training models that can generalize to unseen domains or datasets.
Papers and Code
Jun 26, 2025
Abstract:Detectors often suffer from performance drop due to domain gap between training and testing data. Recent methods explore diffusion models applied to domain generalization (DG) and adaptation (DA) tasks, but still struggle with large inference costs and have not yet fully leveraged the capabilities of diffusion models. We propose to tackle these problems by extracting intermediate features from a single-step diffusion process, improving feature collection and fusion to reduce inference time by 75% while enhancing performance on source domains (i.e., Fitness). Then, we construct an object-centered auxiliary branch by applying box-masked images with class prompts to extract robust and domain-invariant features that focus on object. We also apply consistency loss to align the auxiliary and ordinary branch, balancing fitness and generalization while preventing overfitting and improving performance on target domains (i.e., Generalization). Furthermore, within a unified framework, standard detectors are guided by diffusion detectors through feature-level and object-level alignment on source domains (for DG) and unlabeled target domains (for DA), thereby improving cross-domain detection performance (i.e., Transferability). Our method achieves competitive results on 3 DA benchmarks and 5 DG benchmarks. Additionally, experiments on COCO generalization benchmark demonstrate that our method maintains significant advantages and show remarkable efficiency in large domain shifts and low-data scenarios. Our work shows the superiority of applying diffusion models to domain generalized and adaptive detection tasks and offers valuable insights for visual perception tasks across diverse domains. The code is available at \href{https://github.com/heboyong/Fitness-Generalization-Transferability}{Fitness-Generalization-Transferability}.
* Accepted by ICCV2025. arXiv admin note: text overlap with
arXiv:2503.02101
Via

Jun 25, 2025
Abstract:Semi-supervised domain generalization (SSDG) aims to solve the problem of generalizing to out-of-distribution data when only a few labels are available. Due to label scarcity, applying domain generalization methods often underperform. Consequently, existing SSDG methods combine semi-supervised learning methods with various regularization terms. However, these methods do not explicitly regularize to learn domains invariant representations across all domains, which is a key goal for domain generalization. To address this, we introduce FixCLR. Inspired by success in self-supervised learning, we change two crucial components to adapt contrastive learning for explicit domain invariance regularization: utilization of class information from pseudo-labels and using only a repelling term. FixCLR can also be added on top of most existing SSDG and semi-supervised methods for complementary performance improvements. Our research includes extensive experiments that have not been previously explored in SSDG studies. These experiments include benchmarking different improvements to semi-supervised methods, evaluating the performance of pretrained versus non-pretrained models, and testing on datasets with many domains. Overall, FixCLR proves to be an effective SSDG method, especially when combined with other semi-supervised methods.
Via

Jun 26, 2025
Abstract:Large language models (LLMs) are regularly evaluated using benchmark datasets. But what justifies making inferences about an LLM's capabilities based on its answers to a curated set of questions? This paper first introduces a formal framework to address this question. The key is to note that the benchmarks used to test LLMs -- such as AP exams -- are also those used to test people. However, this raises an implication: these benchmarks are only valid tests if LLMs misunderstand concepts in ways that mirror human misunderstandings. Otherwise, success on benchmarks only demonstrates potemkin understanding: the illusion of understanding driven by answers irreconcilable with how any human would interpret a concept. We present two procedures for quantifying the existence of potemkins: one using a specially designed benchmark in three domains, the other using a general procedure that provides a lower-bound on their prevalence. We find that potemkins are ubiquitous across models, tasks, and domains. We also find that these failures reflect not just incorrect understanding, but deeper internal incoherence in concept representations.
Via

Jun 25, 2025
Abstract:Foundation models (FMs) are catalyzing a transformative shift in materials science (MatSci) by enabling scalable, general-purpose, and multimodal AI systems for scientific discovery. Unlike traditional machine learning models, which are typically narrow in scope and require task-specific engineering, FMs offer cross-domain generalization and exhibit emergent capabilities. Their versatility is especially well-suited to materials science, where research challenges span diverse data types and scales. This survey provides a comprehensive overview of foundation models, agentic systems, datasets, and computational tools supporting this growing field. We introduce a task-driven taxonomy encompassing six broad application areas: data extraction, interpretation and Q\&A; atomistic simulation; property prediction; materials structure, design and discovery; process planning, discovery, and optimization; and multiscale modeling. We discuss recent advances in both unimodal and multimodal FMs, as well as emerging large language model (LLM) agents. Furthermore, we review standardized datasets, open-source tools, and autonomous experimental platforms that collectively fuel the development and integration of FMs into research workflows. We assess the early successes of foundation models and identify persistent limitations, including challenges in generalizability, interpretability, data imbalance, safety concerns, and limited multimodal fusion. Finally, we articulate future research directions centered on scalable pretraining, continual learning, data governance, and trustworthiness.
Via

Jun 25, 2025
Abstract:Deep learning on graphs has shown remarkable success across numerous applications, including social networks, bio-physics, traffic networks, and recommendation systems. Regardless of their successes, current methods frequently depend on the assumption that training and testing data share the same distribution, a condition rarely met in real-world scenarios. While graph-transformer (GT) backbones have recently outperformed traditional message-passing neural networks (MPNNs) in multiple in-distribution (ID) benchmarks, their effectiveness under distribution shifts remains largely unexplored. In this work, we address the challenge of out-of-distribution (OOD) generalization for graph neural networks, with a special focus on the impact of backbone architecture. We systematically evaluate GT and hybrid backbones in OOD settings and compare them to MPNNs. To do so, we adapt several leading domain generalization (DG) algorithms to work with GTs and assess their performance on a benchmark designed to test a variety of distribution shifts. Our results reveal that GT and hybrid GT-MPNN backbones consistently demonstrate stronger generalization ability compared to MPNNs, even without specialized DG algorithms. Additionally, we propose a novel post-training analysis approach that compares the clustering structure of the entire ID and OOD test datasets, specifically examining domain alignment and class separation. Demonstrating its model-agnostic design, this approach not only provided meaningful insights into GT and MPNN backbones. It also shows promise for broader applicability to DG problems beyond graph learning, offering a deeper perspective on generalization abilities that goes beyond standard accuracy metrics. Together, our findings highlight the promise of graph-transformers for robust, real-world graph learning and set a new direction for future research in OOD generalization.
Via

Jun 26, 2025
Abstract:Image editing techniques have rapidly advanced, facilitating both innovative use cases and malicious manipulation of digital images. Deep learning-based methods have recently achieved high accuracy in pixel-level forgery localization, yet they frequently struggle with computational overhead and limited representation power, particularly for subtle or complex tampering. In this paper, we propose M2SFormer, a novel Transformer encoder-based framework designed to overcome these challenges. Unlike approaches that process spatial and frequency cues separately, M2SFormer unifies multi-frequency and multi-scale attentions in the skip connection, harnessing global context to better capture diverse forgery artifacts. Additionally, our framework addresses the loss of fine detail during upsampling by utilizing a global prior map, a curvature metric indicating the difficulty of forgery localization, which then guides a difficulty-guided attention module to preserve subtle manipulations more effectively. Extensive experiments on multiple benchmark datasets demonstrate that M2SFormer outperforms existing state-of-the-art models, offering superior generalization in detecting and localizing forgeries across unseen domains.
* Accepted in International Conference on Computer Vision (ICCV) 2025
Via

Jun 25, 2025
Abstract:Large language models (LLMs) have shown strong capabilities in complex reasoning, and test-time scaling techniques can enhance their performance with comparably low cost. Many of these methods have been developed and evaluated on mathematical reasoning benchmarks such as AIME. This paper investigates whether the lessons learned from these benchmarks generalize to the domain of advanced theoretical physics. We evaluate a range of common test-time scaling methods on the TPBench physics dataset and compare their effectiveness with results on AIME. To better leverage the structure of physics problems, we develop a novel, symbolic weak-verifier framework to improve parallel scaling results. Our empirical results demonstrate that this method significantly outperforms existing test-time scaling approaches on TPBench. We also evaluate our method on AIME, confirming its effectiveness in solving advanced mathematical problems. Our findings highlight the power of step-wise symbolic verification for tackling complex scientific problems.
* 23 pages, 6 figures
Via

Jun 26, 2025
Abstract:Compositional Zero-Shot Learning (CZSL) investigates compositional generalization capacity to recognize unknown state-object pairs based on learned primitive concepts. Existing CZSL methods typically derive primitives features through a simple composition-prototype mapping, which is suboptimal for a set of individuals that can be divided into distinct semantic subsets. Moreover, the all-to-one cross-modal primitives matching neglects compositional divergence within identical states or objects, limiting fine-grained image-composition alignment. In this study, we propose EVA, a Mixture-of-Experts Semantic Variant Alignment framework for CZSL. Specifically, we introduce domain-expert adaption, leveraging multiple experts to achieve token-aware learning and model high-quality primitive representations. To enable accurate compositional generalization, we further present semantic variant alignment to select semantically relevant representation for image-primitives matching. Our method significantly outperforms other state-of-the-art CZSL methods on three popular benchmarks in both closed- and open-world settings, demonstrating the efficacy of the proposed insight.
Via

Jun 26, 2025
Abstract:Continual learning (CL) with large pre-trained models is challenged by catastrophic forgetting and task interference. Existing LoRA-based Mixture-of-Experts (MoE) approaches mitigate forgetting by assigning and freezing task-specific adapters, but suffer from interference, redundancy, and ambiguous routing due to coarse adapter-level selection. However, this design introduces three key challenges: 1) Interference: Activating full LoRA experts per input leads to subspace interference and prevents selective reuse of useful components across tasks. 2) Redundancy: Newly added experts often duplicate or contradict existing knowledge due to unnecessary activation of unrelated ranks and insufficient reuse of relevant ones. 3) Ambiguity: Overlapping features across tasks confuse the router, resulting in unstable expert assignments. As more experts accumulate, earlier task routing degrades, accelerating forgetting. We propose MoRA, a Mixture-of-Rank Adaptive learning approach with self-activated and sparse rank activation for CL. Unlike mixing multiple low-rank matrices, MoRA decomposes each rank-r update into r rank-1 components, each treated as an independent expert, enabling fine-grained mixture of rank-1 expert utilization while mitigating interference and redundancy. To avoid ambiguous routing, we propose that each rank-1 expert can infer its own relevance via intermediate activations. Coupled with our proposed rank pruning and activation budgets, MoRA adaptively selects a sparse mixture of ranks per input. We validate MoRA on continual learning tasks with CLIP and large language models (LLMs), analyzing both in-domain learning and out-of-domain forgetting/generalization during fine-tuning. MoRA shows significant effectiveness on enhancing CL with PTMs, and improving generalization while mitigating forgetting.
* Preprint
Via

Jun 26, 2025
Abstract:Vision-language-action (VLA) models extend vision-language models (VLM) by integrating action generation modules for robotic manipulation. Leveraging strengths of VLM in vision perception and instruction understanding, VLA models exhibit promising generalization across diverse manipulation tasks. However, applications demanding high precision and accuracy reveal performance gaps without further adaptation. Evidence from multiple domains highlights the critical role of post-training to align foundational models with downstream applications, spurring extensive research on post-training VLA models. VLA model post-training aims to address the challenge of improving an embodiment's ability to interact with the environment for the given tasks, analogous to the process of humans motor skills acquisition. Accordingly, this paper reviews post-training strategies for VLA models through the lens of human motor learning, focusing on three dimensions: environments, embodiments, and tasks. A structured taxonomy is introduced aligned with human learning mechanisms: (1) enhancing environmental perception, (2) improving embodiment awareness, (3) deepening task comprehension, and (4) multi-component integration. Finally, key challenges and trends in post-training VLA models are identified, establishing a conceptual framework to guide future research. This work delivers both a comprehensive overview of current VLA model post-training methods from a human motor learning perspective and practical insights for VLA model development. (Project website: https://github.com/AoqunJin/Awesome-VLA-Post-Training)
Via
