Abstract:Large Vision-Language Models (LVLMs) have shown remarkable capabilities, yet hallucinations remain a persistent challenge. This work presents a systematic analysis of the internal evolution of visual perception and token generation in LVLMs, revealing two key patterns. First, perception follows a three-stage GATE process: early layers perform a Global scan, intermediate layers Approach and Tighten on core content, and later layers Explore supplementary regions. Second, generation exhibits an SAD (Subdominant Accumulation to Dominant) pattern, where hallucinated tokens arise from the repeated accumulation of subdominant tokens lacking support from attention (visual perception) or feed-forward network (internal knowledge). Guided by these findings, we devise the VDC (Validated Dominance Correction) strategy, which detects unsupported tokens and replaces them with validated dominant ones to improve output reliability. Extensive experiments across multiple models and benchmarks confirm that VDC substantially mitigates hallucinations.




Abstract:Evaluating the robustness of Large Vision-Language Models (LVLMs) is essential for their continued development and responsible deployment in real-world applications. However, existing robustness benchmarks typically focus on hallucination or misleading textual inputs, while largely overlooking the equally critical challenge posed by misleading visual inputs in assessing visual understanding. To fill this important gap, we introduce MVI-Bench, the first comprehensive benchmark specially designed for evaluating how Misleading Visual Inputs undermine the robustness of LVLMs. Grounded in fundamental visual primitives, the design of MVI-Bench centers on three hierarchical levels of misleading visual inputs: Visual Concept, Visual Attribute, and Visual Relationship. Using this taxonomy, we curate six representative categories and compile 1,248 expertly annotated VQA instances. To facilitate fine-grained robustness evaluation, we further introduce MVI-Sensitivity, a novel metric that characterizes LVLM robustness at a granular level. Empirical results across 18 state-of-the-art LVLMs uncover pronounced vulnerabilities to misleading visual inputs, and our in-depth analyses on MVI-Bench provide actionable insights that can guide the development of more reliable and robust LVLMs. The benchmark and codebase can be accessed at https://github.com/chenyil6/MVI-Bench.




Abstract:We introduce MSLoRA, a backbone-agnostic, parameter-efficient adapter that reweights feature responses rather than re-tuning the underlying backbone. Existing low-rank adaptation methods are mostly confined to vision transformers (ViTs) and struggle to generalize across architectures. MSLoRA unifies adaptation for both convolutional neural networks (CNNs) and ViTs by combining a low-rank linear projection with a multi-scale nonlinear transformation that jointly modulates spatial and channel attention. The two components are fused through pointwise multiplication and a residual connection, yielding a lightweight module that shifts feature attention while keeping pretrained weights frozen. Extensive experiments demonstrate that MSLoRA consistently improves transfer performance on classification, detection, and segmentation tasks with roughly less than 5\% of backbone parameters. The design further enables stable optimization, fast convergence, and strong cross-architecture generalization. By reweighting rather than re-tuning, MSLoRA provides a simple and universal approach for efficient adaptation of frozen vision backbones.
Abstract:With the integration of massive distributed energy resources and the widespread participation of novel market entities, the operation of active distribution networks (ADNs) is progressively evolving into a complex multi-scenario, multi-objective problem. Although expert engineers have developed numerous domain specific models (DSMs) to address distinct technical problems, mastering, integrating, and orchestrating these heterogeneous DSMs still entail considerable overhead for ADN operators. Therefore, an intelligent approach is urgently required to unify these DSMs and enable efficient coordination. To address this challenge, this paper proposes the ADN-Agent architecture, which leverages a general large language model (LLM) to coordinate multiple DSMs, enabling adaptive intent recognition, task decomposition, and DSM invocation. Within the ADN-Agent, we design a novel communication mechanism that provides a unified and flexible interface for diverse heterogeneous DSMs. Finally, for some language-intensive subtasks, we propose an automated training pipeline for fine-tuning small language models, thereby effectively enhancing the overall problem-solving capability of the system. Comprehensive comparisons and ablation experiments validate the efficacy of the proposed method and demonstrate that the ADN-Agent architecture outperforms existing LLM application paradigms.
Abstract:In-context learning (ICL) has emerged as a powerful paradigm for Large Visual Language Models (LVLMs), enabling them to leverage a few examples directly from input contexts. However, the effectiveness of this approach is heavily reliant on the selection of demonstrations, a process that is NP-hard. Traditional strategies, including random, similarity-based sampling and infoscore-based sampling, often lead to inefficiencies or suboptimal performance, struggling to balance both efficiency and effectiveness in demonstration selection. In this paper, we propose a novel demonstration selection framework named Coreset-based Dual Retrieval (CoDR). We show that samples within a diverse subset achieve a higher expected mutual information. To implement this, we introduce a cluster-pruning method to construct a diverse coreset that aligns more effectively with the query while maintaining diversity. Additionally, we develop a dual retrieval mechanism that enhances the selection process by achieving global demonstration selection while preserving efficiency. Experimental results demonstrate that our method significantly improves the ICL performance compared to the existing strategies, providing a robust solution for effective and efficient demonstration selection.
Abstract:Chain-of-Thought (CoT) prompting has emerged as a powerful approach to enhancing the reasoning capabilities of Large Language Models (LLMs). However, existing implementations, such as in-context learning and fine-tuning, remain costly and inefficient. To improve CoT reasoning at a lower cost, and inspired by the task vector paradigm, we introduce CoT Vectors, compact representations that encode task-general, multi-step reasoning knowledge. Through experiments with Extracted CoT Vectors, we observe pronounced layer-wise instability, manifesting as a U-shaped performance curve that reflects a systematic three-stage reasoning process in LLMs. To address this limitation, we propose Learnable CoT Vectors, optimized under a teacher-student framework to provide more stable and robust guidance. Extensive evaluations across diverse benchmarks and models demonstrate that CoT Vectors not only outperform existing baselines but also achieve performance comparable to parameter-efficient fine-tuning methods, while requiring fewer trainable parameters. Moreover, by treating CoT Vectors as a probe, we uncover how their effectiveness varies due to latent space structure, information density, acquisition mechanisms, and pre-training differences, offering new insights into the functional organization of multi-step reasoning in LLMs. The source code will be released.




Abstract:Parameter transfer is a central paradigm in transfer learning, enabling knowledge reuse across tasks and domains by sharing model parameters between upstream and downstream models. However, when only a subset of parameters from the upstream model is transferred to the downstream model, there remains a lack of theoretical understanding of the conditions under which such partial parameter reuse is beneficial and of the factors that govern its effectiveness. To address this gap, we analyze a setting in which both the upstream and downstream models are ReLU convolutional neural networks (CNNs). Within this theoretical framework, we characterize how the inherited parameters act as carriers of universal knowledge and identify key factors that amplify their beneficial impact on the target task. Furthermore, our analysis provides insight into why, in certain cases, transferring parameters can lead to lower test accuracy on the target task than training a new model from scratch. Numerical experiments and real-world data experiments are conducted to empirically validate our theoretical findings.




Abstract:View missing remains a significant challenge in graph-based multi-view semi-supervised learning, hindering their real-world applications. To address this issue, traditional methods introduce a missing indicator matrix and focus on mining partial structure among existing samples in each view for label propagation (LP). However, we argue that these disregarded missing samples sometimes induce discontinuous local structures, i.e., sub-clusters, breaking the fundamental smoothness assumption in LP. Consequently, such a Sub-Cluster Problem (SCP) would distort graph fusion and degrade classification performance. To alleviate SCP, we propose a novel incomplete multi-view semi-supervised learning method, termed AGF-TI. Firstly, we design an adversarial graph fusion scheme to learn a robust consensus graph against the distorted local structure through a min-max framework. By stacking all similarity matrices into a tensor, we further recover the incomplete structure from the high-order consistency information based on the low-rank tensor learning. Additionally, the anchor-based strategy is incorporated to reduce the computational complexity. An efficient alternative optimization algorithm combining a reduced gradient descent method is developed to solve the formulated objective, with theoretical convergence. Extensive experimental results on various datasets validate the superiority of our proposed AGF-TI as compared to state-of-the-art methods. Code is available at https://github.com/ZhangqiJiang07/AGF_TI.
Abstract:Meta-black-box optimization has been significantly advanced through the use of large language models (LLMs), yet in fancy on constrained evolutionary optimization. In this work, AwesomeDE is proposed that leverages LLMs as the strategy of meta-optimizer to generate update rules for constrained evolutionary algorithm without human intervention. On the meanwhile, $RTO^2H$ framework is introduced for standardize prompt design of LLMs. The meta-optimizer is trained on a diverse set of constrained optimization problems. Key components, including prompt design and iterative refinement, are systematically analyzed to determine their impact on design quality. Experimental results demonstrate that the proposed approach outperforms existing methods in terms of computational efficiency and solution accuracy. Furthermore, AwesomeDE is shown to generalize well across distinct problem domains, suggesting its potential for broad applicability. This research contributes to the field by providing a scalable and data-driven methodology for automated constrained algorithm design, while also highlighting limitations and directions for future work.
Abstract:The SoccerNet 2025 Challenges mark the fifth annual edition of the SoccerNet open benchmarking effort, dedicated to advancing computer vision research in football video understanding. This year's challenges span four vision-based tasks: (1) Team Ball Action Spotting, focused on detecting ball-related actions in football broadcasts and assigning actions to teams; (2) Monocular Depth Estimation, targeting the recovery of scene geometry from single-camera broadcast clips through relative depth estimation for each pixel; (3) Multi-View Foul Recognition, requiring the analysis of multiple synchronized camera views to classify fouls and their severity; and (4) Game State Reconstruction, aimed at localizing and identifying all players from a broadcast video to reconstruct the game state on a 2D top-view of the field. Across all tasks, participants were provided with large-scale annotated datasets, unified evaluation protocols, and strong baselines as starting points. This report presents the results of each challenge, highlights the top-performing solutions, and provides insights into the progress made by the community. The SoccerNet Challenges continue to serve as a driving force for reproducible, open research at the intersection of computer vision, artificial intelligence, and sports. Detailed information about the tasks, challenges, and leaderboards can be found at https://www.soccer-net.org, with baselines and development kits available at https://github.com/SoccerNet.