Abstract:In visuomotor policy learning, the control policy for the robotic agent is derived directly from visual inputs. The typical approach, where a policy and vision encoder are trained jointly from scratch, generalizes poorly to novel visual scene changes. Using pre-trained vision models (PVMs) to inform a policy network improves robustness in model-free reinforcement learning (MFRL). Recent developments in Model-based reinforcement learning (MBRL) suggest that MBRL is more sample-efficient than MFRL. However, counterintuitively, existing work has found PVMs to be ineffective in MBRL. Here, we investigate PVM's effectiveness in MBRL, specifically on generalization under visual domain shifts. We show that, in scenarios with severe shifts, PVMs perform much better than a baseline model trained from scratch. We further investigate the effects of varying levels of fine-tuning of PVMs. Our results show that partial fine-tuning can maintain the highest average task performance under the most extreme distribution shifts. Our results demonstrate that PVMs are highly successful in promoting robustness in visual policy learning, providing compelling evidence for their wider adoption in model-based robotic learning applications.




Abstract:We present a method to create storytelling visualization with time series data. Many personal decisions nowadays rely on access to dynamic data regularly, as we have seen during the COVID-19 pandemic. It is thus desirable to construct storytelling visualization for dynamic data that is selected by an individual for a specific context. Because of the need to tell data-dependent stories, predefined storyboards based on known data cannot accommodate dynamic data easily nor scale up to many different individuals and contexts. Motivated initially by the need to communicate time series data during the COVID-19 pandemic, we developed a novel computer-assisted method for meta-authoring of stories, which enables the design of storyboards that include feature-action patterns in anticipation of potential features that may appear in dynamically arrived or selected data. In addition to meta-storyboards involving COVID-19 data, we also present storyboards for telling stories about progress in a machine learning workflow. Our approach is complementary to traditional methods for authoring storytelling visualization, and provides an efficient means to construct data-dependent storyboards for different data-streams of similar contexts.