Abstract:Multimodal retrieval systems typically employ Vision Language Models (VLMs) that encode images and text independently into vectors within a shared embedding space. Despite incorporating text encoders, VLMs consistently underperform specialized text models on text-only retrieval tasks. Moreover, introducing additional text encoders increases storage, inference overhead, and exacerbates retrieval inefficiencies, especially in multilingual settings. To address these limitations, we propose a multi-task learning framework that unifies the feature representation across images, long and short texts, and intent-rich queries. To our knowledge, this is the first work to jointly optimize multilingual image retrieval, text retrieval, and natural language understanding (NLU) tasks within a single framework. Our approach integrates image and text retrieval with a shared text encoder that is enhanced by NLU features for intent understanding and retrieval accuracy.
Abstract:Instruction-based image editing has garnered significant attention due to its direct interaction with users. However, real-world user instructions are immensely diverse, and existing methods often fail to generalize effectively to instructions outside their training domain, limiting their practical application. To address this, we propose Lego-Edit, which leverages the generalization capability of Multi-modal Large Language Model (MLLM) to organize a suite of model-level editing tools to tackle this challenge. Lego-Edit incorporates two key designs: (1) a model-level toolkit comprising diverse models efficiently trained on limited data and several image manipulation functions, enabling fine-grained composition of editing actions by the MLLM; and (2) a three-stage progressive reinforcement learning approach that uses feedback on unannotated, open-domain instructions to train the MLLM, equipping it with generalized reasoning capabilities for handling real-world instructions. Experiments demonstrate that Lego-Edit achieves state-of-the-art performance on GEdit-Bench and ImgBench. It exhibits robust reasoning capabilities for open-domain instructions and can utilize newly introduced editing tools without additional fine-tuning. Code is available: https://github.com/xiaomi-research/lego-edit.