University of Kaiserslautern-Landau, MODE Collaboration
Abstract:Multi-subject customization aims to synthesize multiple user-specified subjects into a coherent image. To address issues such as subjects missing or conflicts, recent works incorporate layout guidance to provide explicit spatial constraints. However, existing methods still struggle to balance three critical objectives: text alignment, subject identity preservation, and layout control, while the reliance on additional training further limits their scalability and efficiency. In this paper, we present AnyMS, a novel training-free framework for layout-guided multi-subject customization. AnyMS leverages three input conditions: text prompt, subject images, and layout constraints, and introduces a bottom-up dual-level attention decoupling mechanism to harmonize their integration during generation. Specifically, global decoupling separates cross-attention between textual and visual conditions to ensure text alignment. Local decoupling confines each subject's attention to its designated area, which prevents subject conflicts and thus guarantees identity preservation and layout control. Moreover, AnyMS employs pre-trained image adapters to extract subject-specific features aligned with the diffusion model, removing the need for subject learning or adapter tuning. Extensive experiments demonstrate that AnyMS achieves state-of-the-art performance, supporting complex compositions and scaling to a larger number of subjects.
Abstract:Compositional zero-shot learning (CZSL) aims to recognize unseen state-object compositions by generalizing from a training set of their primitives (state and object). Current methods often overlook the rich hierarchical structures, such as the semantic hierarchy of primitives (e.g., apple fruit) and the conceptual hierarchy between primitives and compositions (e.g, sliced apple apple). A few recent efforts have shown effectiveness in modeling these hierarchies through loss regularization within Euclidean space. In this paper, we argue that they fail to scale to the large-scale taxonomies required for real-world CZSL: the space's polynomial volume growth in flat geometry cannot match the exponential structure, impairing generalization capacity. To this end, we propose H2em, a new framework that learns Hierarchical Hyperbolic EMbeddings for CZSL. H2em leverages the unique properties of hyperbolic geometry, a space naturally suited for embedding tree-like structures with low distortion. However, a naive hyperbolic mapping may suffer from hierarchical collapse and poor fine-grained discrimination. We further design two learning objectives to structure this space: a Dual-Hierarchical Entailment Loss that uses hyperbolic entailment cones to enforce the predefined hierarchies, and a Discriminative Alignment Loss with hard negative mining to establish a large geodesic distance between semantically similar compositions. Furthermore, we devise Hyperbolic Cross-Modal Attention to realize instance-aware cross-modal infusion within hyperbolic geometry. Extensive ablations on three benchmarks demonstrate that H2em establishes a new state-of-the-art in both closed-world and open-world scenarios. Our codes will be released.
Abstract:Perceiving and reconstructing 3D scene geometry from visual inputs is crucial for autonomous driving. However, there still lacks a driving-targeted dense geometry perception model that can adapt to different scenarios and camera configurations. To bridge this gap, we propose a Driving Visual Geometry Transformer (DVGT), which reconstructs a global dense 3D point map from a sequence of unposed multi-view visual inputs. We first extract visual features for each image using a DINO backbone, and employ alternating intra-view local attention, cross-view spatial attention, and cross-frame temporal attention to infer geometric relations across images. We then use multiple heads to decode a global point map in the ego coordinate of the first frame and the ego poses for each frame. Unlike conventional methods that rely on precise camera parameters, DVGT is free of explicit 3D geometric priors, enabling flexible processing of arbitrary camera configurations. DVGT directly predicts metric-scaled geometry from image sequences, eliminating the need for post-alignment with external sensors. Trained on a large mixture of driving datasets including nuScenes, OpenScene, Waymo, KITTI, and DDAD, DVGT significantly outperforms existing models on various scenarios. Code is available at https://github.com/wzzheng/DVGT.
Abstract:With the surge of pre-trained text-to-image flow matching models, text-based image editing performance has gained remarkable improvement, especially for \underline{simple editing} that only contains a single editing target. To satisfy the exploding editing requirements, the \underline{complex editing} which contains multiple editing targets has posed as a more challenging task. However, current complex editing solutions: single-round and multi-round editing are limited by long text following and cumulative inconsistency, respectively. Thus, they struggle to strike a balance between semantic alignment and source consistency. In this paper, we propose \textbf{FlowDC}, which decouples the complex editing into multiple sub-editing effects and superposes them in parallel during the editing process. Meanwhile, we observed that the velocity quantity that is orthogonal to the editing displacement harms the source structure preserving. Thus, we decompose the velocity and decay the orthogonal part for better source consistency. To evaluate the effectiveness of complex editing settings, we construct a complex editing benchmark: Complex-PIE-Bench. On two benchmarks, FlowDC shows superior results compared with existing methods. We also detail the ablations of our module designs.
Abstract:Vision-Language Models (VLMs) show great promise for autonomous driving, but their suitability for safety-critical scenarios is largely unexplored, raising safety concerns. This issue arises from the lack of comprehensive benchmarks that assess both external environmental risks and in-cabin driving behavior safety simultaneously. To bridge this critical gap, we introduce DSBench, the first comprehensive Driving Safety Benchmark designed to assess a VLM's awareness of various safety risks in a unified manner. DSBench encompasses two major categories: external environmental risks and in-cabin driving behavior safety, divided into 10 key categories and a total of 28 sub-categories. This comprehensive evaluation covers a wide range of scenarios, ensuring a thorough assessment of VLMs' performance in safety-critical contexts. Extensive evaluations across various mainstream open-source and closed-source VLMs reveal significant performance degradation under complex safety-critical situations, highlighting urgent safety concerns. To address this, we constructed a large dataset of 98K instances focused on in-cabin and external safety scenarios, showing that fine-tuning on this dataset significantly enhances the safety performance of existing VLMs and paves the way for advancing autonomous driving technology. The benchmark toolkit, code, and model checkpoints will be publicly accessible.
Abstract:Social navigation in densely populated dynamic environments poses a significant challenge for autonomous mobile robots, requiring advanced strategies for safe interaction. Existing reinforcement learning (RL)-based methods require over 2000+ hours of extensive training and often struggle to generalize to unfamiliar environments without additional fine-tuning, limiting their practical application in real-world scenarios. To address these limitations, we propose SocialNav-Map, a novel zero-shot social navigation framework that combines dynamic human trajectory prediction with occupancy mapping, enabling safe and efficient navigation without the need for environment-specific training. Specifically, SocialNav-Map first transforms the task goal position into the constructed map coordinate system. Subsequently, it creates a dynamic occupancy map that incorporates predicted human movements as dynamic obstacles. The framework employs two complementary methods for human trajectory prediction: history prediction and orientation prediction. By integrating these predicted trajectories into the occupancy map, the robot can proactively avoid potential collisions with humans while efficiently navigating to its destination. Extensive experiments on the Social-HM3D and Social-MP3D datasets demonstrate that SocialNav-Map significantly outperforms state-of-the-art (SOTA) RL-based methods, which require 2,396 GPU hours of training. Notably, it reduces human collision rates by over 10% without necessitating any training in novel environments. By eliminating the need for environment-specific training, SocialNav-Map achieves superior navigation performance, paving the way for the deployment of social navigation systems in real-world environments characterized by diverse human behaviors. The code is available at: https://github.com/linglingxiansen/SocialNav-Map.




Abstract:Vision-Language Models (VLMs), leveraging their powerful visual perception and reasoning capabilities, have been widely applied in Unmanned Aerial Vehicle (UAV) tasks. However, the spatial intelligence capabilities of existing VLMs in UAV scenarios remain largely unexplored, raising concerns about their effectiveness in navigating and interpreting dynamic environments. To bridge this gap, we introduce SpatialSky-Bench, a comprehensive benchmark specifically designed to evaluate the spatial intelligence capabilities of VLMs in UAV navigation. Our benchmark comprises two categories-Environmental Perception and Scene Understanding-divided into 13 subcategories, including bounding boxes, color, distance, height, and landing safety analysis, among others. Extensive evaluations of various mainstream open-source and closed-source VLMs reveal unsatisfactory performance in complex UAV navigation scenarios, highlighting significant gaps in their spatial capabilities. To address this challenge, we developed the SpatialSky-Dataset, a comprehensive dataset containing 1M samples with diverse annotations across various scenarios. Leveraging this dataset, we introduce Sky-VLM, a specialized VLM designed for UAV spatial reasoning across multiple granularities and contexts. Extensive experimental results demonstrate that Sky-VLM achieves state-of-the-art performance across all benchmark tasks, paving the way for the development of VLMs suitable for UAV scenarios. The source code is available at https://github.com/linglingxiansen/SpatialSKy.
Abstract:Robotic manipulation and navigation are fundamental capabilities of embodied intelligence, enabling effective robot interactions with the physical world. Achieving these capabilities requires a cohesive understanding of the environment, including object recognition to localize target objects, object affordances to identify potential interaction areas and spatial affordances to discern optimal areas for both object placement and robot movement. While Vision-Language Models (VLMs) excel at high-level task planning and scene understanding, they often struggle to infer actionable positions for physical interaction, such as functional grasping points and permissible placement regions. This limitation stems from the lack of fine-grained annotations for object and spatial affordances in their training datasets. To tackle this challenge, we introduce RoboAfford++, a generative AI-enhanced dataset for multimodal affordance learning for both robotic manipulation and navigation. Our dataset comprises 869,987 images paired with 2.0 million question answering (QA) annotations, covering three critical tasks: object affordance recognition to identify target objects based on attributes and spatial relationships, object affordance prediction to pinpoint functional parts for manipulation, and spatial affordance localization to identify free space for object placement and robot navigation. Complementing this dataset, we propose RoboAfford-Eval, a comprehensive benchmark for assessing affordance-aware prediction in real-world scenarios, featuring 338 meticulously annotated samples across the same three tasks. Extensive experimental results reveal the deficiencies of existing VLMs in affordance learning, while fine-tuning on the RoboAfford++ dataset significantly enhances their ability to reason about object and spatial affordances, validating the dataset's effectiveness.
Abstract:The integration of different learning paradigms has long been a focus of machine learning research, aimed at overcoming the inherent limitations of individual methods. Fuzzy rule-based models excel in interpretability and have seen widespread application across diverse fields. However, they face challenges such as complex design specifications and scalability issues with large datasets. The fusion of different techniques and strategies, particularly Gradient Boosting, with Fuzzy Rule-Based Models offers a robust solution to these challenges. This paper proposes an Integrated Fusion Framework that merges the strengths of both paradigms to enhance model performance and interpretability. At each iteration, a Fuzzy Rule-Based Model is constructed and controlled by a dynamic factor to optimize its contribution to the overall ensemble. This control factor serves multiple purposes: it prevents model dominance, encourages diversity, acts as a regularization parameter, and provides a mechanism for dynamic tuning based on model performance, thus mitigating the risk of overfitting. Additionally, the framework incorporates a sample-based correction mechanism that allows for adaptive adjustments based on feedback from a validation set. Experimental results substantiate the efficacy of the presented gradient boosting framework for fuzzy rule-based models, demonstrating performance enhancement, especially in terms of mitigating overfitting and complexity typically associated with many rules. By leveraging an optimal factor to govern the contribution of each model, the framework improves performance, maintains interpretability, and simplifies the maintenance and update of the models.




Abstract:Open-vocabulary scene graph generation (OVSGG) extends traditional SGG by recognizing novel objects and relationships beyond predefined categories, leveraging the knowledge from pre-trained large-scale models. Existing OVSGG methods always adopt a two-stage pipeline: 1) \textit{Infusing knowledge} into large-scale models via pre-training on large datasets; 2) \textit{Transferring knowledge} from pre-trained models with fully annotated scene graphs during supervised fine-tuning. However, due to a lack of explicit interaction modeling, these methods struggle to distinguish between interacting and non-interacting instances of the same object category. This limitation induces critical issues in both stages of OVSGG: it generates noisy pseudo-supervision from mismatched objects during knowledge infusion, and causes ambiguous query matching during knowledge transfer. To this end, in this paper, we propose an inter\textbf{AC}tion-\textbf{C}entric end-to-end OVSGG framework (\textbf{ACC}) in an interaction-driven paradigm to minimize these mismatches. For \textit{interaction-centric knowledge infusion}, ACC employs a bidirectional interaction prompt for robust pseudo-supervision generation to enhance the model's interaction knowledge. For \textit{interaction-centric knowledge transfer}, ACC first adopts interaction-guided query selection that prioritizes pairing interacting objects to reduce interference from non-interacting ones. Then, it integrates interaction-consistent knowledge distillation to bolster robustness by pushing relational foreground away from the background while retaining general knowledge. Extensive experimental results on three benchmarks show that ACC achieves state-of-the-art performance, demonstrating the potential of interaction-centric paradigms for real-world applications.