Alert button
Picture for Fan Yang

Fan Yang

Alert button

Few-shot Image Generation via Style Adaptation and Content Preservation

Nov 30, 2023
Xiaosheng He, Fan Yang, Fayao Liu, Guosheng Lin

Training a generative model with limited data (e.g., 10) is a very challenging task. Many works propose to fine-tune a pre-trained GAN model. However, this can easily result in overfitting. In other words, they manage to adapt the style but fail to preserve the content, where \textit{style} denotes the specific properties that defines a domain while \textit{content} denotes the domain-irrelevant information that represents diversity. Recent works try to maintain a pre-defined correspondence to preserve the content, however, the diversity is still not enough and it may affect style adaptation. In this work, we propose a paired image reconstruction approach for content preservation. We propose to introduce an image translation module to GAN transferring, where the module teaches the generator to separate style and content, and the generator provides training data to the translation module in return. Qualitative and quantitative experiments show that our method consistently surpasses the state-of-the-art methods in few shot setting.

Viaarxiv icon

Griffon: Spelling out All Object Locations at Any Granularity with Large Language Models

Nov 27, 2023
Yufei Zhan, Yousong Zhu, Zhiyang Chen, Fan Yang, Ming Tang, Jinqiao Wang

Replicating the innate human ability to detect all objects based on free-form texts at any granularity remains a formidable challenge for Vision-Language models. Current Large Vision Language Models (LVLMs) are predominantly constrained to grounding a single, pre-existing object, relying solely on data from Referring Expression Comprehension tasks. The limitation leads to a compromise in model design, necessitating the introduction of visual expert models or the integration of customized head structures. Beyond these constraints, our research delves into the untapped potential of LVLMs and uncover their inherent capability for basic object perception, allowing them to accurately identify and locate objects of interest. Building on this insight, we introduce a novel language-prompted localization dataset designed to fully unleash the capabilities of LVLMs in integrating fine-grained object perception with precise location awareness. More importantly, we present $\textbf{Griffon}$, a purely LVLM-based baseline, which does not require the introduction of any special tokens, expert models, or additional detection modules. It simply maintains a consistent structure with popular LVLMs by unifying data formats across various localization-related scenarios and is trained end-to-end through a well-designed pipeline. Comprehensive experiments demonstrate that $\textbf{Griffon}$ not only achieves state-of-the-art performance on the fine-grained RefCOCO series but also approaches the capabilities of the expert model Faster RCNN on the detection benchmark MSCOCO.

* Technical report. The codes and dataset will be released soon at https://github.com/jefferyZhan/Griffon 
Viaarxiv icon

Tessel: Boosting Distributed Execution of Large DNN Models via Flexible Schedule Search

Nov 26, 2023
Zhiqi Lin, Youshan Miao, Guanbin Xu, Cheng Li, Olli Saarikivi, Saeed Maleki, Fan Yang

Increasingly complex and diverse deep neural network (DNN) models necessitate distributing the execution across multiple devices for training and inference tasks, and also require carefully planned schedules for performance. However, existing practices often rely on predefined schedules that may not fully exploit the benefits of emerging diverse model-aware operator placement strategies. Handcrafting high-efficiency schedules can be challenging due to the large and varying schedule space. This paper presents Tessel, an automated system that searches for efficient schedules for distributed DNN training and inference for diverse operator placement strategies. To reduce search costs, Tessel leverages the insight that the most efficient schedules often exhibit repetitive pattern (repetend) across different data inputs. This leads to a two-phase approach: repetend construction and schedule completion. By exploring schedules for various operator placement strategies, Tessel significantly improves both training and inference performance. Experiments with representative DNN models demonstrate that Tessel achieves up to 5.5x training performance speedup and up to 38% inference latency reduction.

* The paper is accepted by HPCA 2024 
Viaarxiv icon

A Safer Vision-based Autonomous Planning System for Quadrotor UAVs with Dynamic Obstacle Trajectory Prediction and Its Application with LLMs

Nov 21, 2023
Jiageng Zhong, Ming Li, Yinliang Chen, Zihang Wei, Fan Yang, Haoran Shen

For intelligent quadcopter UAVs, a robust and reliable autonomous planning system is crucial. Most current trajectory planning methods for UAVs are suitable for static environments but struggle to handle dynamic obstacles, which can pose challenges and even dangers to flight. To address this issue, this paper proposes a vision-based planning system that combines tracking and trajectory prediction of dynamic obstacles to achieve efficient and reliable autonomous flight. We use a lightweight object detection algorithm to identify dynamic obstacles and then use Kalman Filtering to track and estimate their motion states. During the planning phase, we not only consider static obstacles but also account for the potential movements of dynamic obstacles. For trajectory generation, we use a B-spline-based trajectory search algorithm, which is further optimized with various constraints to enhance safety and alignment with the UAV's motion characteristics. We conduct experiments in both simulation and real-world environments, and the results indicate that our approach can successfully detect and avoid obstacles in dynamic environments in real-time, offering greater reliability compared to existing approaches. Furthermore, with the advancements in Natural Language Processing (NLP) technology demonstrating exceptional zero-shot generalization capabilities, more user-friendly human-machine interactions have become feasible, and this study also explores the integration of autonomous planning systems with Large Language Models (LLMs).

Viaarxiv icon

Robust and Communication-Efficient Federated Domain Adaptation via Random Features

Nov 08, 2023
Zhanbo Feng, Yuanjie Wang, Jie Li, Fan Yang, Jiong Lou, Tiebin Mi, Robert. C. Qiu, Zhenyu Liao

Modern machine learning (ML) models have grown to a scale where training them on a single machine becomes impractical. As a result, there is a growing trend to leverage federated learning (FL) techniques to train large ML models in a distributed and collaborative manner. These models, however, when deployed on new devices, might struggle to generalize well due to domain shifts. In this context, federated domain adaptation (FDA) emerges as a powerful approach to address this challenge. Most existing FDA approaches typically focus on aligning the distributions between source and target domains by minimizing their (e.g., MMD) distance. Such strategies, however, inevitably introduce high communication overheads and can be highly sensitive to network reliability. In this paper, we introduce RF-TCA, an enhancement to the standard Transfer Component Analysis approach that significantly accelerates computation without compromising theoretical and empirical performance. Leveraging the computational advantage of RF-TCA, we further extend it to FDA setting with FedRF-TCA. The proposed FedRF-TCA protocol boasts communication complexity that is \emph{independent} of the sample size, while maintaining performance that is either comparable to or even surpasses state-of-the-art FDA methods. We present extensive experiments to showcase the superior performance and robustness (to network condition) of FedRF-TCA.

* 21 pages 
Viaarxiv icon

Detecting Generated Images by Real Images Only

Nov 02, 2023
Xiuli Bi, Bo Liu, Fan Yang, Bin Xiao, Weisheng Li, Gao Huang, Pamela C. Cosman

As deep learning technology continues to evolve, the images yielded by generative models are becoming more and more realistic, triggering people to question the authenticity of images. Existing generated image detection methods detect visual artifacts in generated images or learn discriminative features from both real and generated images by massive training. This learning paradigm will result in efficiency and generalization issues, making detection methods always lag behind generation methods. This paper approaches the generated image detection problem from a new perspective: Start from real images. By finding the commonality of real images and mapping them to a dense subspace in feature space, the goal is that generated images, regardless of their generative model, are then projected outside the subspace. As a result, images from different generative models can be detected, solving some long-existing problems in the field. Experimental results show that although our method was trained only by real images and uses 99.9\% less training data than other deep learning-based methods, it can compete with state-of-the-art methods and shows excellent performance in detecting emerging generative models with high inference efficiency. Moreover, the proposed method shows robustness against various post-processing. These advantages allow the method to be used in real-world scenarios.

Viaarxiv icon

VisPercep: A Vision-Language Approach to Enhance Visual Perception for People with Blindness and Low Vision

Oct 31, 2023
Yu Hao, Fan Yang, Hao Huang, Shuaihang Yuan, Sundeep Rangan, John-Ross Rizzo, Yao Wang, Yi Fang

People with blindness and low vision (pBLV) encounter substantial challenges when it comes to comprehensive scene recognition and precise object identification in unfamiliar environments. Additionally, due to the vision loss, pBLV have difficulty in accessing and identifying potential tripping hazards on their own. In this paper, we present a pioneering approach that leverages a large vision-language model to enhance visual perception for pBLV, offering detailed and comprehensive descriptions of the surrounding environments and providing warnings about the potential risks. Our method begins by leveraging a large image tagging model (i.e., Recognize Anything (RAM)) to identify all common objects present in the captured images. The recognition results and user query are then integrated into a prompt, tailored specifically for pBLV using prompt engineering. By combining the prompt and input image, a large vision-language model (i.e., InstructBLIP) generates detailed and comprehensive descriptions of the environment and identifies potential risks in the environment by analyzing the environmental objects and scenes, relevant to the prompt. We evaluate our approach through experiments conducted on both indoor and outdoor datasets. Our results demonstrate that our method is able to recognize objects accurately and provide insightful descriptions and analysis of the environment for pBLV.

Viaarxiv icon

SCB-ST-Dataset4: Extending the Spatio-Temporal Behavior Dataset in Student Classroom Scenarios Through Image Dataset Method

Oct 25, 2023
Fan Yang, Xiaofei Wang

Figure 1 for SCB-ST-Dataset4: Extending the Spatio-Temporal Behavior Dataset in Student Classroom Scenarios Through Image Dataset Method
Figure 2 for SCB-ST-Dataset4: Extending the Spatio-Temporal Behavior Dataset in Student Classroom Scenarios Through Image Dataset Method
Figure 3 for SCB-ST-Dataset4: Extending the Spatio-Temporal Behavior Dataset in Student Classroom Scenarios Through Image Dataset Method
Figure 4 for SCB-ST-Dataset4: Extending the Spatio-Temporal Behavior Dataset in Student Classroom Scenarios Through Image Dataset Method

Using deep learning methods to detect students' classroom behavior automatically is a promising approach for analyzing their class performance and improving teaching effectiveness. However, the lack of publicly available spatio-temporal datasets on student behavior, as well as the high cost of manually labeling such datasets, pose significant challenges for researchers in this field. To address this issue, we proposed a method for extending the spatio-temporal behavior dataset in Student Classroom Scenarios (SCB-ST-Dataset4) through image dataset. Our SCB-ST-Dataset4 comprises 754094 images with 25670 labels, focusing on 3 behaviors: hand-raising, reading, writing. Our proposed method can rapidly generate spatio-temporal behavioral datasets without requiring annotation. Furthermore, we proposed a Behavior Similarity Index (BSI) to explore the similarity of behaviors. We evaluated the dataset using the YOLOv5, YOLOv7, YOLOv8, and SlowFast algorithms, achieving a mean average precision (map) of up to 82.3%. The experiment further demonstrates the effectiveness of our method. This dataset provides a robust foundation for future research in student behavior detection, potentially contributing to advancements in this field. The SCB-ST-Dataset4 is available for download at: https://github.com/Whiffe/SCB-dataset.

* arXiv admin note: substantial text overlap with arXiv:2310.02522; text overlap with arXiv:2306.03318 
Viaarxiv icon

A Spatio-Temporal Attention-Based Method for Detecting Student Classroom Behaviors

Oct 18, 2023
Fan Yang

Accurately detecting student behavior from classroom videos is beneficial for analyzing their classroom status and improving teaching efficiency. However, low accuracy in student classroom behavior detection is a prevalent issue. To address this issue, we propose a Spatio-Temporal Attention-Based Method for Detecting Student Classroom Behaviors (BDSTA). Firstly, the SlowFast network is used to generate motion and environmental information feature maps from the video. Then, the spatio-temporal attention module is applied to the feature maps, including information aggregation, compression and stimulation processes. Subsequently, attention maps in the time, channel and space dimensions are obtained, and multi-label behavior classification is performed based on these attention maps. To solve the long-tail data problem that exists in student classroom behavior datasets, we use an improved focal loss function to assign more weight to the tail class data during training. Experimental results are conducted on a self-made student classroom behavior dataset named STSCB. Compared with the SlowFast model, the average accuracy of student behavior classification detection improves by 8.94\% using BDSTA.

Viaarxiv icon

BitNet: Scaling 1-bit Transformers for Large Language Models

Oct 17, 2023
Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang, Ruiping Wang, Yi Wu, Furu Wei

The increasing size of large language models has posed challenges for deployment and raised concerns about environmental impact due to high energy consumption. In this work, we introduce BitNet, a scalable and stable 1-bit Transformer architecture designed for large language models. Specifically, we introduce BitLinear as a drop-in replacement of the nn.Linear layer in order to train 1-bit weights from scratch. Experimental results on language modeling show that BitNet achieves competitive performance while substantially reducing memory footprint and energy consumption, compared to state-of-the-art 8-bit quantization methods and FP16 Transformer baselines. Furthermore, BitNet exhibits a scaling law akin to full-precision Transformers, suggesting its potential for effective scaling to even larger language models while maintaining efficiency and performance benefits.

* Work in progress 
Viaarxiv icon