Abstract:Understanding how and why large language models (LLMs) fail is becoming a central challenge as models rapidly evolve and static evaluations fall behind. While automated probing has been enabled by dynamic test generation, existing approaches often discover isolated failure cases, lack principled control over exploration, and provide limited insight into the underlying structure of model weaknesses. We propose ProbeLLM, a benchmark-agnostic automated probing framework that elevates weakness discovery from individual failures to structured failure modes. ProbeLLM formulates probing as a hierarchical Monte Carlo Tree Search, explicitly allocating limited probing budgets between global exploration of new failure regions and local refinement of recurring error patterns. By restricting probing to verifiable test cases and leveraging tool-augmented generation and verification, ProbeLLM grounds failure discovery in reliable evidence. Discovered failures are further consolidated into interpretable failure modes via failure-aware embeddings and boundary-aware induction. Across diverse benchmarks and LLMs, ProbeLLM reveals substantially broader, cleaner, and more fine-grained failure landscapes than static benchmarks and prior automated methods, supporting a shift from case-centric evaluation toward principled weakness discovery.
Abstract:While most AI alignment research focuses on preventing models from generating explicitly harmful content, a more subtle risk is emerging: capability-oriented training induced exploitation. We investigate whether language models, when trained with reinforcement learning (RL) in environments with implicit loopholes, will spontaneously learn to exploit these flaws to maximize their reward, even without any malicious intent in their training. To test this, we design a suite of four diverse "vulnerability games", each presenting a unique, exploitable flaw related to context-conditional compliance, proxy metrics, reward tampering, and self-evaluation. Our experiments show that models consistently learn to exploit these vulnerabilities, discovering opportunistic strategies that significantly increase their reward at the expense of task correctness or safety. More critically, we find that these exploitative strategies are not narrow "tricks" but generalizable skills; they can be transferred to new tasks and even "distilled" from a capable teacher model to other student models through data alone. Our findings reveal that capability-oriented training induced risks pose a fundamental challenge to current alignment approaches, suggesting that future AI safety work must extend beyond content moderation to rigorously auditing and securing the training environments and reward mechanisms themselves. Code is available at https://github.com/YujunZhou/Capability_Oriented_Alignment_Risk.
Abstract:Personalized prompting offers large opportunities for deploying large language models (LLMs) to diverse users, yet existing prompt optimization methods primarily focus on task-level optimization while largely overlooking user-specific preferences and latent constraints of individual users. This gap is primarily due to (i) the absence of high-quality, privacy-sensitive data that capture personalized user-LLM interactions at scale, and (ii) the lack of robust reward signals for individual preferences. To overcome existing data limitations, we introduce a high-fidelity synthetic data generation framework called PersonaGym. Unlike prior work that treats personalization as static persona-preference pairs, PersonaGym models a dynamic preference process via an agentic LLM system to simulate realistic preference behaviors and semantic-aware noise in order to generate personalized multi-turn interaction trajectories. Using PersonaGym, we release PersonaAtlas, a large-scale, high-quality, and diverse synthetic dataset of high-fidelity multi-turn personalized interaction trajectories that closely mirror real-world preference expression and noise patterns. We further propose Personalized Prompt Optimization (PPOpt), a scalable and model-agnostic framework that optimizes user prompts based on interaction histories without modifying the deployed LLM. PPOpt adopts a reason-then-optimize paradigm that infers an explicit user profile and conditions prompt rewriting on the user profile to avoid reward hacking. Our training procedure for PPOpt integrates a cold-start supervised prior with outcome-driven multi-objective reinforcement learning. We present extensive experiments to demonstrate consistent improvements over state-of-the-art baselines in terms of task performance, personalization quality, and robustness to noisy as well as to sparse preference signals.
Abstract:Benchmarks establish a standardized evaluation framework to systematically assess the performance of large language models (LLMs), facilitating objective comparisons and driving advancements in the field. However, existing benchmarks fail to differentiate question difficulty, limiting their ability to effectively distinguish models' capabilities. To address this limitation, we propose RankLLM, a novel framework designed to quantify both question difficulty and model competency. RankLLM introduces difficulty as the primary criterion for differentiation, enabling a more fine-grained evaluation of LLM capabilities. RankLLM's core mechanism facilitates bidirectional score propagation between models and questions. The core intuition of RankLLM is that a model earns a competency score when it correctly answers a question, while a question's difficulty score increases when it challenges a model. Using this framework, we evaluate 30 models on 35,550 questions across multiple domains. RankLLM achieves 90% agreement with human judgments and consistently outperforms strong baselines such as IRT. It also exhibits strong stability, fast convergence, and high computational efficiency, making it a practical solution for large-scale, difficulty-aware LLM evaluation.
Abstract:Medical Anomaly Detection (MedAD) presents a significant opportunity to enhance diagnostic accuracy using Large Multimodal Models (LMMs) to interpret and answer questions based on medical images. However, the reliance on Supervised Fine-Tuning (SFT) on simplistic and fragmented datasets has hindered the development of models capable of plausible reasoning and robust multimodal generalization. To overcome this, we introduce MedAD-38K, the first large-scale, multi-modal, and multi-center benchmark for MedAD featuring diagnostic Chain-of-Thought (CoT) annotations alongside structured Visual Question-Answering (VQA) pairs. On this foundation, we propose a two-stage training framework. The first stage, Cognitive Injection, uses SFT to instill foundational medical knowledge and align the model with a structured think-then-answer paradigm. Given that standard policy optimization can produce reasoning that is disconnected from the final answer, the second stage incorporates Consistency Group Relative Policy Optimization (Con-GRPO). This novel algorithm incorporates a crucial consistency reward to ensure the generated reasoning process is relevant and logically coherent with the final diagnosis. Our proposed model, MedAD-R1, achieves state-of-the-art (SOTA) performance on the MedAD-38K benchmark, outperforming strong baselines by more than 10\%. This superior performance stems from its ability to generate transparent and logically consistent reasoning pathways, offering a promising approach to enhancing the trustworthiness and interpretability of AI for clinical decision support.
Abstract:Digital twins, as precise digital representations of physical systems, have evolved from passive simulation tools into intelligent and autonomous entities through the integration of artificial intelligence technologies. This paper presents a unified four-stage framework that systematically characterizes AI integration across the digital twin lifecycle, spanning modeling, mirroring, intervention, and autonomous management. By synthesizing existing technologies and practices, we distill a unified four-stage framework that systematically characterizes how AI methodologies are embedded across the digital twin lifecycle: (1) modeling the physical twin through physics-based and physics-informed AI approaches, (2) mirroring the physical system into a digital twin with real-time synchronization, (3) intervening in the physical twin through predictive modeling, anomaly detection, and optimization strategies, and (4) achieving autonomous management through large language models, foundation models, and intelligent agents. We analyze the synergy between physics-based modeling and data-driven learning, highlighting the shift from traditional numerical solvers to physics-informed and foundation models for physical systems. Furthermore, we examine how generative AI technologies, including large language models and generative world models, transform digital twins into proactive and self-improving cognitive systems capable of reasoning, communication, and creative scenario generation. Through a cross-domain review spanning eleven application domains, including healthcare, aerospace, smart manufacturing, robotics, and smart cities, we identify common challenges related to scalability, explainability, and trustworthiness, and outline directions for responsible AI-driven digital twin systems.
Abstract:In high-stakes scenarios-such as self-harm, legal, or medical queries-LLMs must be both trustworthy and helpful. However, these goals often conflict. We propose priority alignment, a new alignment paradigm that enforces a strict "trustworthy-before-helpful" ordering: optimization of helpfulness is conditioned on first meeting trustworthy thresholds (e.g., harmlessness or honesty). To realize this, we introduce Self-Priority Alignment (SPA)-a fully unsupervised framework that generates diverse responses, self-evaluates them and refines them by the model itself, and applies dual-criterion denoising to remove inconsistency and control variance. From this, SPA constructs lexicographically ordered preference pairs and fine-tunes the model using an uncertainty-weighted alignment loss that emphasizes high-confidence, high-gap decisions. Experiments across multiple benchmarks show that SPA improves helpfulness without compromising safety, outperforming strong baselines while preserving general capabilities. Our results demonstrate that SPA provides a scalable and interpretable alignment strategy for critical LLM applications.
Abstract:High-quality Question-Answer (QA) datasets are foundational for reliable Large Language Model (LLM) evaluation, yet even expert-crafted datasets exhibit persistent gaps in domain coverage, misaligned difficulty distributions, and factual inconsistencies. The recent surge in generative model-powered datasets has compounded these quality challenges. In this work, we introduce RefineLab, the first LLM-driven framework that automatically refines raw QA textual data into high-quality datasets under a controllable token-budget constraint. RefineLab takes a set of target quality attributes (such as coverage and difficulty balance) as refinement objectives, and performs selective edits within a predefined token budget to ensure practicality and efficiency. In essence, RefineLab addresses a constrained optimization problem: improving the quality of QA samples as much as possible while respecting resource limitations. With a set of available refinement operations (e.g., rephrasing, distractor replacement), RefineLab takes as input the original dataset, a specified set of target quality dimensions, and a token budget, and determines which refinement operations should be applied to each QA sample. This process is guided by an assignment module that selects optimal refinement strategies to maximize overall dataset quality while adhering to the budget constraint. Experiments demonstrate that RefineLab consistently narrows divergence from expert datasets across coverage, difficulty alignment, factual fidelity, and distractor quality. RefineLab pioneers a scalable, customizable path to reproducible dataset design, with broad implications for LLM evaluation.
Abstract:Generative models such as Large Language Models, Diffusion Models, and generative adversarial networks have recently revolutionized the creation of synthetic data, offering scalable solutions to data scarcity, privacy, and annotation challenges in data mining. This tutorial introduces the foundations and latest advances in synthetic data generation, covers key methodologies and practical frameworks, and discusses evaluation strategies and applications. Attendees will gain actionable insights into leveraging generative synthetic data to enhance data mining research and practice. More information can be found on our website: https://syndata4dm.github.io/.
Abstract:While large language models (LLMs) have demonstrated remarkable performance on high-level semantic tasks, they often struggle with fine-grained, token-level understanding and structural reasoning--capabilities that are essential for applications requiring precision and control. We introduce TASE, a comprehensive benchmark designed to evaluate LLMs' ability to perceive and reason about token-level information across languages. TASE covers 10 tasks under two core categories: token awareness and structural understanding, spanning Chinese, English, and Korean, with a 35,927-instance evaluation set and a scalable synthetic data generation pipeline for training. Tasks include character counting, token alignment, syntactic structure parsing, and length constraint satisfaction. We evaluate over 30 leading commercial and open-source LLMs, including O3, Claude 4, Gemini 2.5 Pro, and DeepSeek-R1, and train a custom Qwen2.5-14B model using the GRPO training method. Results show that human performance significantly outpaces current LLMs, revealing persistent weaknesses in token-level reasoning. TASE sheds light on these limitations and provides a new diagnostic lens for future improvements in low-level language understanding and cross-lingual generalization. Our code and dataset are publicly available at https://github.com/cyzcz/Tase .