Data-centric AI, with its primary focus on the collection, management, and utilization of data to drive AI models and applications, has attracted increasing attention in recent years. In this article, we conduct an in-depth and comprehensive review, offering a forward-looking outlook on the current efforts in data-centric AI pertaining to graph data-the fundamental data structure for representing and capturing intricate dependencies among massive and diverse real-life entities. We introduce a systematic framework, Data-centric Graph Machine Learning (DC-GML), that encompasses all stages of the graph data lifecycle, including graph data collection, exploration, improvement, exploitation, and maintenance. A thorough taxonomy of each stage is presented to answer three critical graph-centric questions: (1) how to enhance graph data availability and quality; (2) how to learn from graph data with limited-availability and low-quality; (3) how to build graph MLOps systems from the graph data-centric view. Lastly, we pinpoint the future prospects of the DC-GML domain, providing insights to navigate its advancements and applications.
Open-domain Multi-Document Summarization (ODMDS) is a critical tool for condensing vast arrays of documents into coherent, concise summaries. With a more inter-related document set, there does not necessarily exist a correct answer for the retrieval, making it hard to measure the retrieving performance. We propose a rule-based method to process query-based document summarization datasets into ODMDS datasets. Based on this method, we introduce a novel dataset, ODSum, a sophisticated case with its document index interdependent and often interrelated. We tackle ODMDS with the \textit{retrieve-then-summarize} method, and the performance of a list of retrievers and summarizers is investigated. Through extensive experiments, we identify variances in evaluation metrics and provide insights into their reliability. We also found that LLMs suffer great performance loss from retrieving errors. We further experimented methods to improve the performance as well as investigate their robustness against imperfect retrieval. We will release our data and code at https://github.com/yale-nlp/ODSum.
This project presents a deep learning approach to generate monophonic melodies based on input beats, allowing even amateurs to create their own music compositions. Three effective methods - LSTM with Full Attention, LSTM with Local Attention, and Transformer with Relative Position Representation - are proposed for this novel task, providing great variation, harmony, and structure in the generated music. This project allows anyone to compose their own music by tapping their keyboards or ``recoloring'' beat sequences from existing works.
Graph Neural Networks (GNNs) have exhibited impressive performance in many graph learning tasks. Nevertheless, the performance of GNNs can deteriorate when the input graph data suffer from weak information, i.e., incomplete structure, incomplete features, and insufficient labels. Most prior studies, which attempt to learn from the graph data with a specific type of weak information, are far from effective in dealing with the scenario where diverse data deficiencies exist and mutually affect each other. To fill the gap, in this paper, we aim to develop an effective and principled approach to the problem of graph learning with weak information (GLWI). Based on the findings from our empirical analysis, we derive two design focal points for solving the problem of GLWI, i.e., enabling long-range propagation in GNNs and allowing information propagation to those stray nodes isolated from the largest connected component. Accordingly, we propose D$^2$PT, a dual-channel GNN framework that performs long-range information propagation not only on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities. We further develop a prototype contrastive alignment algorithm that aligns the class-level prototypes learned from two channels, such that the two different information propagation processes can mutually benefit from each other and the finally learned model can well handle the GLWI problem. Extensive experiments on eight real-world benchmark datasets demonstrate the effectiveness and efficiency of our proposed methods in various GLWI scenarios.
In this paper, we introduce a unified and generalist Biomedical Generative Pre-trained Transformer (BiomedGPT) model, which leverages self-supervision on large and diverse datasets to accept multi-modal inputs and perform a range of downstream tasks. Our experiments demonstrate that BiomedGPT delivers expansive and inclusive representations of biomedical data, outperforming the majority of preceding state-of-the-art models across five distinct tasks with 20 public datasets spanning over 15 unique biomedical modalities. Through the ablation study, we also showcase the efficacy of our multi-modal and multi-task pretraining approach in transferring knowledge to previously unseen data. Overall, our work presents a significant step forward in developing unified and generalist models for biomedicine, with far-reaching implications for improving healthcare outcomes.
People primarily consult tables to conduct data analysis or answer specific questions. Text generation systems that can provide accurate table summaries tailored to users' information needs can facilitate more efficient access to relevant data insights. However, existing table-to-text generation studies primarily focus on converting tabular data into coherent statements, rather than addressing information-seeking purposes. In this paper, we define a new query-focused table summarization task, where text generation models have to perform human-like reasoning and analysis over the given table to generate a tailored summary, and we introduce a new benchmark named QTSumm for this task. QTSumm consists of 5,625 human-annotated query-summary pairs over 2,437 tables on diverse topics. Moreover, we investigate state-of-the-art models (i.e., text generation, table-to-text generation, and large language models) on the QTSumm dataset. Experimental results and manual analysis reveal that our benchmark presents significant challenges in table-to-text generation for future research.
Recent studies have found that summaries generated by large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets. Therefore, we investigate a new learning paradigm of text summarization models that considers the LLMs as the reference or the gold-standard oracle on commonly used summarization datasets such as the CNN/DailyMail dataset. To examine the standard practices that are aligned with the new learning setting, we propose a novel training method that is based on contrastive learning with LLMs as a summarization quality evaluator. For this reward-based training method, we investigate two different methods of utilizing LLMs for summary quality evaluation, namely GPTScore and GPTRank. Our experiments on the CNN/DailyMail dataset demonstrate that smaller summarization models trained by our proposed method can achieve performance equal to or surpass that of the reference LLMs, as evaluated by the LLMs themselves. This underscores the efficacy of our proposed paradigm in enhancing model performance over the standard maximum likelihood estimation (MLE) training method, and its efficiency since it only requires a small budget to access the LLMs. We release the training scripts, model outputs, and LLM-based evaluation results to facilitate future studies.
Recently, ChatGPT, along with DALL-E-2 and Codex,has been gaining significant attention from society. As a result, many individuals have become interested in related resources and are seeking to uncover the background and secrets behind its impressive performance. In fact, ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC), which involves the creation of digital content, such as images, music, and natural language, through AI models. The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace. AIGC is achieved by extracting and understanding intent information from instructions provided by human, and generating the content according to its knowledge and the intent information. In recent years, large-scale models have become increasingly important in AIGC as they provide better intent extraction and thus, improved generation results. With the growth of data and the size of the models, the distribution that the model can learn becomes more comprehensive and closer to reality, leading to more realistic and high-quality content generation. This survey provides a comprehensive review on the history of generative models, and basic components, recent advances in AIGC from unimodal interaction and multimodal interaction. From the perspective of unimodality, we introduce the generation tasks and relative models of text and image. From the perspective of multimodality, we introduce the cross-application between the modalities mentioned above. Finally, we discuss the existing open problems and future challenges in AIGC.
Interpretability and efficiency are two important considerations for the adoption of neural automatic metrics. In this work, we develop strong-performing automatic metrics for reference-based summarization evaluation, based on a two-stage evaluation pipeline that first extracts basic information units from one text sequence and then checks the extracted units in another sequence. The metrics we developed include two-stage metrics that can provide high interpretability at both the fine-grained unit level and summary level, and one-stage metrics that achieve a balance between efficiency and interoperability. We make the developed tools publicly available through a Python package and GitHub.
While the use of graph-structured data in various fields is becoming increasingly popular, it also raises concerns about the potential unauthorized exploitation of personal data for training commercial graph neural network (GNN) models, which can compromise privacy. To address this issue, we propose a novel method for generating unlearnable graph examples. By injecting delusive but imperceptible noise into graphs using our Error-Minimizing Structural Poisoning (EMinS) module, we are able to make the graphs unexploitable. Notably, by modifying only $5\%$ at most of the potential edges in the graph data, our method successfully decreases the accuracy from ${77.33\%}$ to ${42.47\%}$ on the COLLAB dataset.