Abstract:Graph contrastive learning (GCL) alleviates the heavy reliance on label information for graph representation learning (GRL) via self-supervised learning schemes. The core idea is to learn by maximising mutual information for similar instances, which requires similarity computation between two node instances. However, this operation can be computationally expensive. For example, the time complexity of two commonly adopted contrastive loss functions (i.e., InfoNCE and JSD estimator) for a node is $O(ND)$ and $O(D)$, respectively, where $N$ is the number of nodes, and $D$ is the embedding dimension. Additionally, GCL normally requires a large number of training epochs to be well-trained on large-scale datasets. Inspired by an observation of a technical defect (i.e., inappropriate usage of Sigmoid function) commonly used in two representative GCL works, DGI and MVGRL, we revisit GCL and introduce a new learning paradigm for self-supervised GRL, namely, Group Discrimination (GD), and propose a novel GD-based method called Graph Group Discrimination (GGD). Instead of similarity computation, GGD directly discriminates two groups of summarised node instances with a simple binary cross-entropy loss. As such, GGD only requires $O(1)$ for loss computation of a node. In addition, GGD requires much fewer training epochs to obtain competitive performance compared with GCL methods on large-scale datasets. These two advantages endow GGD with the very efficient property. Extensive experiments show that GGD outperforms state-of-the-art self-supervised methods on 8 datasets. In particular, GGD can be trained in 0.18 seconds (6.44 seconds including data preprocessing) on ogbn-arxiv, which is orders of magnitude (10,000+ faster than GCL baselines} while consuming much less memory. Trained with 9 hours on ogbn-papers100M with billion edges, GGD outperforms its GCL counterparts in both accuracy and efficiency.
Abstract:Data insufficiency problem (i.e., data missing and label scarcity issues) caused by inadequate services and infrastructures or unbalanced development levels of cities has seriously affected the urban computing tasks in real scenarios. Prior transfer learning methods inspire an elegant solution to the data insufficiency, but are only concerned with one kind of insufficiency issue and fail to fully explore these two issues existing in the real world. In addition, cross-city transfer in existing methods overlooks the inter-city data privacy which is a public concern in practical application. To address the above challenging problems, we propose a novel Cross-city Federated Transfer Learning framework (CcFTL) to cope with the data insufficiency and privacy problems. Concretely, CcFTL transfers the relational knowledge from multiple rich-data source cities to the target city. Besides, the model parameters specific to the target task are firstly trained on the source data and then fine-tuned to the target city by parameter transfer. With our adaptation of federated training and homomorphic encryption settings, CcFTL can effectively deal with the data privacy problem among cities. We take the urban region profiling as an application of smart cities and evaluate the proposed method with a real-world study. The experiments demonstrate the notable superiority of our framework over several competitive state-of-the-art models.
Abstract:Collision avoidance is a widely investigated topic in robotic applications. When applying collision avoidance techniques to a mobile robot, how to deal with the spatial structure of the robot still remains a challenge. In this paper, we design a configuration-aware safe control law by solving a Quadratic Programming (QP) with designed Control Barrier Functions (CBFs) constraints, which can safely navigate a mobile robotic arm to a desired region while avoiding collision with environmental obstacles. The advantage of our approach is that it correctly and in an elegant way incorporates the spatial structure of the mobile robotic arm. This is achieved by merging geometric restrictions among mobile robotic arm links into CBFs constraints. Simulations on a rigid rod and the modeled mobile robotic arm are performed to verify the feasibility and time-efficiency of proposed method. Numerical results about the time consuming for different degrees of freedom illustrate that our method scales well with dimension.
Abstract:A bathtub in a library, a sink in an office, a bed in a laundry room -- the counter-intuition suggests that scene provides important prior knowledge for 3D object detection, which instructs to eliminate the ambiguous detection of similar objects. In this paper, we propose HyperDet3D to explore scene-conditioned prior knowledge for 3D object detection. Existing methods strive for better representation of local elements and their relations without scene-conditioned knowledge, which may cause ambiguity merely based on the understanding of individual points and object candidates. Instead, HyperDet3D simultaneously learns scene-agnostic embeddings and scene-specific knowledge through scene-conditioned hypernetworks. More specifically, our HyperDet3D not only explores the sharable abstracts from various 3D scenes, but also adapts the detector to the given scene at test time. We propose a discriminative Multi-head Scene-specific Attention (MSA) module to dynamically control the layer parameters of the detector conditioned on the fusion of scene-conditioned knowledge. Our HyperDet3D achieves state-of-the-art results on the 3D object detection benchmark of the ScanNet and SUN RGB-D datasets. Moreover, through cross-dataset evaluation, we show the acquired scene-conditioned prior knowledge still takes effect when facing 3D scenes with domain gap.
Abstract:In this paper, we propose a weakly-supervised approach for 3D object detection, which makes it possible to train a strong 3D detector with position-level annotations (i.e. annotations of object centers). In order to remedy the information loss from box annotations to centers, our method, namely Back to Reality (BR), makes use of synthetic 3D shapes to convert the weak labels into fully-annotated virtual scenes as stronger supervision, and in turn utilizes the perfect virtual labels to complement and refine the real labels. Specifically, we first assemble 3D shapes into physically reasonable virtual scenes according to the coarse scene layout extracted from position-level annotations. Then we go back to reality by applying a virtual-to-real domain adaptation method, which refine the weak labels and additionally supervise the training of detector with the virtual scenes. Furthermore, we propose a more challenging benckmark for indoor 3D object detection with more diversity in object sizes to better show the potential of BR. With less than 5% of the labeling labor, we achieve comparable detection performance with some popular fully-supervised approaches on the widely used ScanNet dataset. Code is available at: https://github.com/wyf-ACCEPT/BackToReality
Abstract:While recent automated data augmentation methods lead to state-of-the-art results, their design spaces and the derived data augmentation strategies still incorporate strong human priors. In this work, instead of fixing a set of hand-picked default augmentations alongside the searched data augmentations, we propose a fully automated approach for data augmentation search named Deep AutoAugment (DeepAA). DeepAA progressively builds a multi-layer data augmentation pipeline from scratch by stacking augmentation layers one at a time until reaching convergence. For each augmentation layer, the policy is optimized to maximize the cosine similarity between the gradients of the original and augmented data along the direction with low variance. Our experiments show that even without default augmentations, we can learn an augmentation policy that achieves strong performance with that of previous works. Extensive ablation studies show that the regularized gradient matching is an effective search method for data augmentation policies. Our code is available at: https://github.com/MSU-MLSys-Lab/DeepAA .
Abstract:Modeling user's long-term and short-term interests is crucial for accurate recommendation. However, since there is no manually annotated label for user interests, existing approaches always follow the paradigm of entangling these two aspects, which may lead to inferior recommendation accuracy and interpretability. In this paper, to address it, we propose a Contrastive learning framework to disentangle Long and Short-term interests for Recommendation (CLSR) with self-supervision. Specifically, we first propose two separate encoders to independently capture user interests of different time scales. We then extract long-term and short-term interests proxies from the interaction sequences, which serve as pseudo labels for user interests. Then pairwise contrastive tasks are designed to supervise the similarity between interest representations and their corresponding interest proxies. Finally, since the importance of long-term and short-term interests is dynamically changing, we propose to adaptively aggregate them through an attention-based network for prediction. We conduct experiments on two large-scale real-world datasets for e-commerce and short-video recommendation. Empirical results show that our CLSR consistently outperforms all state-of-the-art models with significant improvements: GAUC is improved by over 0.01, and NDCG is improved by over 4%. Further counterfactual evaluations demonstrate that stronger disentanglement of long and short-term interests is successfully achieved by CLSR. The code and data are available at https://github.com/tsinghua-fib-lab/CLSR.
Abstract:Multivariate time series forecasting has long received significant attention in real-world applications, such as energy consumption and traffic prediction. While recent methods demonstrate good forecasting abilities, they suffer from three fundamental limitations. (i) Discrete neural architectures: Interlacing individually parameterized spatial and temporal blocks to encode rich underlying patterns leads to discontinuous latent state trajectories and higher forecasting numerical errors. (ii) High complexity: Discrete approaches complicate models with dedicated designs and redundant parameters, leading to higher computational and memory overheads. (iii) Reliance on graph priors: Relying on predefined static graph structures limits their effectiveness and practicability in real-world applications. In this paper, we address all the above limitations by proposing a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE). Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures. Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing, allowing deeper graph propagation and fine-grained temporal information aggregation to characterize stable and precise latent spatial-temporal dynamics. Our experiments demonstrate the superiorities of MTGODE from various perspectives on five time series benchmark datasets.
Abstract:Anomaly detection from graph data is an important data mining task in many applications such as social networks, finance, and e-commerce. Existing efforts in graph anomaly detection typically only consider the information in a single scale (view), thus inevitably limiting their capability in capturing anomalous patterns in complex graph data. To address this limitation, we propose a novel framework, graph ANomaly dEtection framework with Multi-scale cONtrastive lEarning (ANEMONE in short). By using a graph neural network as a backbone to encode the information from multiple graph scales (views), we learn better representation for nodes in a graph. In maximizing the agreements between instances at both the patch and context levels concurrently, we estimate the anomaly score of each node with a statistical anomaly estimator according to the degree of agreement from multiple perspectives. To further exploit a handful of ground-truth anomalies (few-shot anomalies) that may be collected in real-life applications, we further propose an extended algorithm, ANEMONE-FS, to integrate valuable information in our method. We conduct extensive experiments under purely unsupervised settings and few-shot anomaly detection settings, and we demonstrate that the proposed method ANEMONE and its variant ANEMONE-FS consistently outperform state-of-the-art algorithms on six benchmark datasets.
Abstract:In recent years, graph neural networks (GNNs) have emerged as a successful tool in a variety of graph-related applications. However, the performance of GNNs can be deteriorated when noisy connections occur in the original graph structures; besides, the dependence on explicit structures prevents GNNs from being applied to general unstructured scenarios. To address these issues, recently emerged deep graph structure learning (GSL) methods propose to jointly optimize the graph structure along with GNN under the supervision of a node classification task. Nonetheless, these methods focus on a supervised learning scenario, which leads to several problems, i.e., the reliance on labels, the bias of edge distribution, and the limitation on application tasks. In this paper, we propose a more practical GSL paradigm, unsupervised graph structure learning, where the learned graph topology is optimized by data itself without any external guidance (i.e., labels). To solve the unsupervised GSL problem, we propose a novel StrUcture Bootstrapping contrastive LearnIng fraMEwork (SUBLIME for abbreviation) with the aid of self-supervised contrastive learning. Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph. To provide persistent guidance, we design a novel bootstrapping mechanism that upgrades the anchor graph with learned structures during model learning. We also design a series of graph learners and post-processing schemes to model the structures to learn. Extensive experiments on eight benchmark datasets demonstrate the significant effectiveness of our proposed SUBLIME and high quality of the optimized graphs.