College of Electrical and Information Engineering, Hunan University
Abstract:Effective tool use and reasoning are essential capabilities for large reasoning models~(LRMs) to address complex real-world problems. Through empirical analysis, we identify that current LRMs lack the capability of sub-task decomposition in complex tool use scenarios, leading to Lazy Reasoning. To address this, we propose a two-stage training framework D-CORE~(\underline{\textbf{D}}ecomposing tasks and \underline{\textbf{Co}}mposing \underline{\textbf{Re}}asoning processes) that first incentivize the LRMs' task decomposition reasoning capability via self-distillation, followed by diversity-aware reinforcement learning~(RL) to restore LRMs' reflective reasoning capability. D-CORE achieves robust tool-use improvements across diverse benchmarks and model scales. Experiments on BFCLv3 demonstrate superiority of our method: D-CORE-8B reaches 77.7\% accuracy, surpassing the best-performing 8B model by 5.7\%. Meanwhile, D-CORE-14B establishes a new state-of-the-art at 79.3\%, outperforming 70B models despite being 5$\times$ smaller. The source code is available at https://github.com/alibaba/EfficientAI.
Abstract:Time series forecasting is important in many fields that require accurate predictions for decision-making. Patching techniques, commonly used and effective in time series modeling, help capture temporal dependencies by dividing the data into patches. However, existing patch-based methods fail to dynamically select patches and typically use all patches during the prediction process. In real-world time series, there are often low-quality issues during data collection, such as missing values, distribution shifts, anomalies and white noise, which may cause some patches to contain low-quality information, negatively impacting the prediction results. To address this issue, this study proposes a robust time series forecasting framework called SEER. Firstly, we propose an Augmented Embedding Module, which improves patch-wise representations using a Mixture-of-Experts (MoE) architecture and obtains series-wise token representations through a channel-adaptive perception mechanism. Secondly, we introduce a Learnable Patch Replacement Module, which enhances forecasting robustness and model accuracy through a two-stage process: 1) a dynamic filtering mechanism eliminates negative patch-wise tokens; 2) a replaced attention module substitutes the identified low-quality patches with global series-wise token, further refining their representations through a causal attention mechanism. Comprehensive experimental results demonstrate the SOTA performance of SEER.
Abstract:Time series data widely exist in real-world cyber-physical systems. Though analyzing and interpreting them contributes to significant values, e.g, disaster prediction and financial risk control, current workflows mainly rely on human data scientists, which requires significant labor costs and lacks automation. To tackle this, we introduce TimeART, a framework fusing the analytical capability of strong out-of-the-box tools and the reasoning capability of Large Language Models (LLMs), which serves as a fully agentic data scientist for Time Series Question Answering (TSQA). To teach the LLM-based Time Series Reasoning Models (TSRMs) strategic tool-use, we also collect a 100k expert trajectory corpus called TimeToolBench. To enhance TSRMs' generalization capability, we then devise a four-stage training strategy, which boosts TSRMs through learning from their own early experiences and self-reflections. Experimentally, we train an 8B TSRM on TimeToolBench and equip it with the TimeART framework, and it achieves consistent state-of-the-art performance on multiple TSQA tasks, which pioneers a novel approach towards agentic time series reasoning.
Abstract:Recent advances in Large Language Models (LLMs) have revolutionized web applications, enabling intelligent search, recommendation, and assistant services with natural language interfaces. Tool-calling extends LLMs with the ability to interact with external APIs, greatly enhancing their practical utility. While prior research has improved tool-calling performance by adopting traditional computer systems techniques, such as parallel and asynchronous execution, the challenge of redundant or repeated tool-calling requests remains largely unaddressed. Caching is a classic solution to this problem, but applying it to LLM tool-calling introduces new difficulties due to heterogeneous request semantics, dynamic workloads, and varying freshness requirements, which render conventional cache policies ineffective. To address these issues, we propose ToolCaching, an efficient feature-driven and adaptive caching framework for LLM tool-calling systems. ToolCaching systematically integrates semantic and system-level features to evaluate request cacheability and estimate caching value. At its core, the VAAC algorithm integrates bandit-based admission with value-driven, multi-factor eviction, jointly accounting for request frequency, recency, and caching value. Extensive experiments on synthetic and public tool-calling workloads demonstrate that ToolCaching with VAAC achieves up to 11% higher cache hit ratios and 34% lower latency compared to standard policies, effectively accelerating LLM tool-calling in practical applications.
Abstract:Spatio-Temporal (ST) Foundation Models (STFMs) promise cross-dataset generalization, yet joint ST pretraining is computationally expensive and grapples with the heterogeneity of domain-specific spatial patterns. Substantially extending our preliminary conference version, we present FactoST-v2, an enhanced factorized framework redesigned for full weight transfer and arbitrary-length generalization. FactoST-v2 decouples universal temporal learning from domain-specific spatial adaptation. The first stage pretrains a minimalist encoder-only backbone using randomized sequence masking to capture invariant temporal dynamics, enabling probabilistic quantile prediction across variable horizons. The second stage employs a streamlined adapter to rapidly inject spatial awareness via meta adaptive learning and prompting. Comprehensive evaluations across diverse domains demonstrate that FactoST-v2 achieves state-of-the-art accuracy with linear efficiency - significantly outperforming existing foundation models in zero-shot and few-shot scenarios while rivaling domain-specific expert baselines. This factorized paradigm offers a practical, scalable path toward truly universal STFMs. Code is available at https://github.com/CityMind-Lab/FactoST.
Abstract:Unsupervised domain adaptation tackles the problem that domain shifts between training and test data impair the performance of neural networks in many real-world applications. Thereby, in realistic scenarios, the source data may no longer be available during adaptation, and the label space of the target domain may differ from the source label space. This setting, known as source-free universal domain adaptation (SF-UniDA), has recently gained attention, but all existing approaches only assume a single domain shift from source to target. In this work, we present the first study on continual SF-UniDA, where the model must adapt sequentially to a stream of multiple different unlabeled target domains. Building upon our previous methods for online SF-UniDA, we combine their key ideas by integrating Gaussian mixture model-based pseudo-labeling within a mean teacher framework for improved stability over long adaptation sequences. Additionally, we introduce consistency losses for further robustness. The resulting method GMM-COMET provides a strong first baseline for continual SF-UniDA and is the only approach in our experiments to consistently improve upon the source-only model across all evaluated scenarios. Our code is available at https://github.com/pascalschlachter/GMM-COMET.




Abstract:In this work, we introduce FLAME, a family of extremely lightweight and capable Time Series Foundation Models, which support both deterministic and probabilistic forecasting via generative probabilistic modeling, thus ensuring both efficiency and robustness. FLAME utilizes the Legendre Memory for strong generalization capabilities. Through adapting variants of Legendre Memory, i.e., translated Legendre (LegT) and scaled Legendre (LegS), in the Encoding and Decoding phases, FLAME can effectively capture the inherent inductive bias within data and make efficient long-range inferences. To enhance the accuracy of probabilistic forecasting while keeping efficient, FLAME adopts a Normalization Flow based forecasting head, which can model the arbitrarily intricate distributions over the forecasting horizon in a generative manner. Comprehensive experiments on well-recognized benchmarks, including TSFM-Bench and ProbTS, demonstrate the consistent state-of-the-art zero-shot performance of FLAME on both deterministic and probabilistic forecasting tasks.
Abstract:Recent advances in self-supervised learning (SSL) have shown tremendous potential for learning 3D point cloud representations without human annotations. However, SSL for 3D point clouds still faces critical challenges due to irregular geometry, shortcut-prone reconstruction, and unbalanced semantics distribution. In this work, we propose DOS (Distilling Observable Softmaps), a novel SSL framework that self-distills semantic relevance softmaps only at observable (unmasked) points. This strategy prevents information leakage from masked regions and provides richer supervision than discrete token-to-prototype assignments. To address the challenge of unbalanced semantics in an unsupervised setting, we introduce Zipfian prototypes and incorporate them using a modified Sinkhorn-Knopp algorithm, Zipf-Sinkhorn, which enforces a power-law prior over prototype usage and modulates the sharpness of the target softmap during training. DOS outperforms current state-of-the-art methods on semantic segmentation and 3D object detection across multiple benchmarks, including nuScenes, Waymo, SemanticKITTI, ScanNet, and ScanNet200, without relying on extra data or annotations. Our results demonstrate that observable-point softmaps distillation offers a scalable and effective paradigm for learning robust 3D representations.
Abstract:Time series forecasting is critical for decision-making across dynamic domains such as energy, finance, transportation, and cloud computing. However, real-world time series often exhibit non-stationarity, including temporal distribution shifts and spectral variability, which pose significant challenges for long-term time series forecasting. In this paper, we propose DTAF, a dual-branch framework that addresses non-stationarity in both the temporal and frequency domains. For the temporal domain, the Temporal Stabilizing Fusion (TFS) module employs a non-stationary mix of experts (MOE) filter to disentangle and suppress temporal non-stationary patterns while preserving long-term dependencies. For the frequency domain, the Frequency Wave Modeling (FWM) module applies frequency differencing to dynamically highlight components with significant spectral shifts. By fusing the complementary outputs of TFS and FWM, DTAF generates robust forecasts that adapt to both temporal and frequency domain non-stationarity. Extensive experiments on real-world benchmarks demonstrate that DTAF outperforms state-of-the-art baselines, yielding significant improvements in forecasting accuracy under non-stationary conditions. All codes are available at https://github.com/PandaJunk/DTAF.
Abstract:Infrared and visible image fusion aims to integrate complementary multi-modal information into a single fused result. However, existing methods 1) fail to account for the degradation visible images under adverse weather conditions, thereby compromising fusion performance; and 2) rely on fixed network architectures, limiting their adaptability to diverse degradation scenarios. To address these issues, we propose a one-stop degradation-aware image fusion framework for multi-degradation scenarios driven by a large language model (MdaIF). Given the distinct scattering characteristics of different degradation scenarios (e.g., haze, rain, and snow) in atmospheric transmission, a mixture-of-experts (MoE) system is introduced to tackle image fusion across multiple degradation scenarios. To adaptively extract diverse weather-aware degradation knowledge and scene feature representations, collectively referred to as the semantic prior, we employ a pre-trained vision-language model (VLM) in our framework. Guided by the semantic prior, we propose degradation-aware channel attention module (DCAM), which employ degradation prototype decomposition to facilitate multi-modal feature interaction in channel domain. In addition, to achieve effective expert routing, the semantic prior and channel-domain modulated features are utilized to guide the MoE, enabling robust image fusion in complex degradation scenarios. Extensive experiments validate the effectiveness of our MdaIF, demonstrating superior performance over SOTA methods.