Computer Aided Medical Procedures, Technische Universit Munchen, Germany, Johns Hopkins University, Baltimore MD, USA
Abstract:3D scene reconstruction and understanding have gained increasing popularity, yet existing methods still struggle to capture fine-grained, language-aware 3D representations from 2D images. In this paper, we present GALA, a novel framework for open-vocabulary 3D scene understanding with 3D Gaussian Splatting (3DGS). GALA distills a scene-specific 3D instance feature field via self-supervised contrastive learning. To extend to generalized language feature fields, we introduce the core contribution of GALA, a cross-attention module with two learnable codebooks that encode view-independent semantic embeddings. This design not only ensures intra-instance feature similarity but also supports seamless 2D and 3D open-vocabulary queries. It reduces memory consumption by avoiding per-Gaussian high-dimensional feature learning. Extensive experiments on real-world datasets demonstrate GALA's remarkable open-vocabulary performance on both 2D and 3D.
Abstract:Contrastive learning has gained significant attention in skeleton-based action recognition for its ability to learn robust representations from unlabeled data. However, existing methods rely on a single skeleton convention, which limits their ability to generalize across datasets with diverse joint structures and anatomical coverage. We propose Multi-Skeleton Contrastive Learning (MS-CLR), a general self-supervised framework that aligns pose representations across multiple skeleton conventions extracted from the same sequence. This encourages the model to learn structural invariances and capture diverse anatomical cues, resulting in more expressive and generalizable features. To support this, we adapt the ST-GCN architecture to handle skeletons with varying joint layouts and scales through a unified representation scheme. Experiments on the NTU RGB+D 60 and 120 datasets demonstrate that MS-CLR consistently improves performance over strong single-skeleton contrastive learning baselines. A multi-skeleton ensemble further boosts performance, setting new state-of-the-art results on both datasets.
Abstract:Perceptualizing tool interactions with deformable structures in surgical procedures remains challenging, as unimodal visualization techniques often fail to capture the complexity of these interactions due to constraints such as occlusion and limited depth perception. This paper presents a novel approach to augment tool navigation in mixed reality environments by providing auditory representations of tool-tissue dynamics, particularly for interactions with soft tissue. BioSonix, a physics-informed design framework, utilizes tissue displacements in 3D space to compute excitation forces for a sound model encoding tissue properties such as stiffness and density. Biomechanical simulations were employed to model particle displacements resulting from tool-tissue interactions, establishing a robust foundation for the method. An optimization approach was used to define configurations for capturing diverse interaction scenarios with varying tool trajectories. Experiments were conducted to validate the accuracy of the sound-displacement mappings. Additionally, two user studies were performed: the first involved two clinical professionals (a neuroradiologist and a cardiologist), who confirmed the method's impact and achieved high task accuracy; the second included 22 biomedical experts, who demonstrated high discrimination accuracy in tissue differentiation and targeting tasks. The results revealed a strong correlation between tool-tissue dynamics and their corresponding auditory profiles, highlighting the potential of these sound representations to enhance the intuitive understanding of complex interactions.
Abstract:Neural Cellular Automata (NCA) offer a robust and interpretable approach to image classification, making them a promising choice for microscopy image analysis. However, a performance gap remains between NCA and larger, more complex architectures. We address this challenge by integrating attention pooling with NCA to enhance feature extraction and improve classification accuracy. The attention pooling mechanism refines the focus on the most informative regions, leading to more accurate predictions. We evaluate our method on eight diverse microscopy image datasets and demonstrate that our approach significantly outperforms existing NCA methods while remaining parameter-efficient and explainable. Furthermore, we compare our method with traditional lightweight convolutional neural network and vision transformer architectures, showing improved performance while maintaining a significantly lower parameter count. Our results highlight the potential of NCA-based models an alternative for explainable image classification.
Abstract:The detection and segmentation of white blood cells in blood smear images is a key step in medical diagnostics, supporting various downstream tasks such as automated blood cell counting, morphological analysis, cell classification, and disease diagnosis and monitoring. Training robust and accurate models requires large amounts of labeled data, which is both time-consuming and expensive to acquire. In this work, we propose a novel approach for weakly supervised segmentation using neural cellular automata (NCA-WSS). By leveraging the feature maps generated by NCA during classification, we can extract segmentation masks without the need for retraining with segmentation labels. We evaluate our method on three white blood cell microscopy datasets and demonstrate that NCA-WSS significantly outperforms existing weakly supervised approaches. Our work illustrates the potential of NCA for both classification and segmentation in a weakly supervised framework, providing a scalable and efficient solution for medical image analysis.
Abstract:Ultrasound (US) imaging is increasingly used in spinal procedures due to its real-time, radiation-free capabilities; however, its effectiveness is hindered by shadowing artifacts that obscure deeper tissue structures. Traditional approaches, such as CT-to-US registration, incorporate anatomical information from preoperative CT scans to guide interventions, but they are limited by complex registration requirements, differences in spine curvature, and the need for recent CT imaging. Recent shape completion methods can offer an alternative by reconstructing spinal structures in US data, while being pretrained on large set of publicly available CT scans. However, these approaches are typically offline and have limited reproducibility. In this work, we introduce a novel integrated system that combines robotic ultrasound with real-time shape completion to enhance spinal visualization. Our robotic platform autonomously acquires US sweeps of the lumbar spine, extracts vertebral surfaces from ultrasound, and reconstructs the complete anatomy using a deep learning-based shape completion network. This framework provides interactive, real-time visualization with the capability to autonomously repeat scans and can enable navigation to target locations. This can contribute to better consistency, reproducibility, and understanding of the underlying anatomy. We validate our approach through quantitative experiments assessing shape completion accuracy and evaluations of multiple spine acquisition protocols on a phantom setup. Additionally, we present qualitative results of the visualization on a volunteer scan.
Abstract:Providing intelligent support to surgical teams is a key frontier in automated surgical scene understanding, with the long-term goal of improving patient outcomes. Developing personalized intelligence for all staff members requires maintaining a consistent state of who is located where for long surgical procedures, which still poses numerous computational challenges. We propose TrackOR, a framework for tackling long-term multi-person tracking and re-identification in the operating room. TrackOR uses 3D geometric signatures to achieve state-of-the-art online tracking performance (+11% Association Accuracy over the strongest baseline), while also enabling an effective offline recovery process to create analysis-ready trajectories. Our work shows that by leveraging 3D geometric information, persistent identity tracking becomes attainable, enabling a critical shift towards the more granular, staff-centric analyses required for personalized intelligent systems in the operating room. This new capability opens up various applications, including our proposed temporal pathway imprints that translate raw tracking data into actionable insights for improving team efficiency and safety and ultimately providing personalized support.
Abstract:Modeling the rotation of moving objects is a fundamental task in computer vision, yet $SO(3)$ extrapolation still presents numerous challenges: (1) unknown quantities such as the moment of inertia complicate dynamics, (2) the presence of external forces and torques can lead to non-conservative kinematics, and (3) estimating evolving state trajectories under sparse, noisy observations requires robustness. We propose modeling trajectories of noisy pose estimates on the manifold of 3D rotations in a physically and geometrically meaningful way by leveraging Neural Controlled Differential Equations guided with $SO(3)$ Savitzky-Golay paths. Existing extrapolation methods often rely on energy conservation or constant velocity assumptions, limiting their applicability in real-world scenarios involving non-conservative forces. In contrast, our approach is agnostic to energy and momentum conservation while being robust to input noise, making it applicable to complex, non-inertial systems. Our approach is easily integrated as a module in existing pipelines and generalizes well to trajectories with unknown physical parameters. By learning to approximate object dynamics from noisy states during training, our model attains robust extrapolation capabilities in simulation and various real-world settings. Code is available at https://github.com/bastianlb/forecasting-rotational-dynamics
Abstract:Deep neural networks are prone to learning spurious correlations, exploiting dataset-specific artifacts rather than meaningful features for prediction. In surgical operating rooms (OR), these manifest through the standardization of smocks and gowns that obscure robust identifying landmarks, introducing model bias for tasks related to modeling OR personnel. Through gradient-based saliency analysis on two public OR datasets, we reveal that CNN models succumb to such shortcuts, fixating on incidental visual cues such as footwear beneath surgical gowns, distinctive eyewear, or other role-specific identifiers. Avoiding such biases is essential for the next generation of intelligent assistance systems in the OR, which should accurately recognize personalized workflow traits, such as surgical skill level or coordination with other staff members. We address this problem by encoding personnel as 3D point cloud sequences, disentangling identity-relevant shape and motion patterns from appearance-based confounders. Our experiments demonstrate that while RGB and geometric methods achieve comparable performance on datasets with apparent simulation artifacts, RGB models suffer a 12% accuracy drop in realistic clinical settings with decreased visual diversity due to standardizations. This performance gap confirms that geometric representations capture more meaningful biometric features, providing an avenue to developing robust methods of modeling humans in the OR.
Abstract:This paper introduces Stress-Aware Learning, a resilient neural training paradigm in which deep neural networks dynamically adjust their optimization behavior - whether under stable training regimes or in settings with uncertain dynamics - based on the concept of Temporary (Elastic) and Permanent (Plastic) Deformation, inspired by structural fatigue in materials science. To instantiate this concept, we propose Plastic Deformation Optimizer, a stress-aware mechanism that injects adaptive noise into model parameters whenever an internal stress signal - reflecting stagnation in training loss and accuracy - indicates persistent optimization difficulty. This enables the model to escape sharp minima and converge toward flatter, more generalizable regions of the loss landscape. Experiments across six architectures, four optimizers, and seven vision benchmarks demonstrate improved robustness and generalization with minimal computational overhead. The code and 3D visuals will be available on GitHub: https://github.com/Stress-Aware-Learning/SAL.