Arizona State University
Abstract:Reinforcement learning (RL) has become popular in enhancing the reasoning capabilities of large language models (LLMs), with Group Relative Policy Optimization (GRPO) emerging as a widely used algorithm in recent systems. Despite GRPO's widespread adoption, we identify a previously unrecognized phenomenon we term Lazy Likelihood Displacement (LLD), wherein the likelihood of correct responses marginally increases or even decreases during training. This behavior mirrors a recently discovered misalignment issue in Direct Preference Optimization (DPO), attributed to the influence of negative gradients. We provide a theoretical analysis of GRPO's learning dynamic, identifying the source of LLD as the naive penalization of all tokens in incorrect responses with the same strength. To address this, we develop a method called NTHR, which downweights penalties on tokens contributing to the LLD. Unlike prior DPO-based approaches, NTHR takes advantage of GRPO's group-based structure, using correct responses as anchors to identify influential tokens. Experiments on math reasoning benchmarks demonstrate that NTHR effectively mitigates LLD, yielding consistent performance gains across models ranging from 0.5B to 3B parameters.
Abstract:Conversational Speech Synthesis (CSS) aims to align synthesized speech with the emotional and stylistic context of user-agent interactions to achieve empathy. Current generative CSS models face interpretability limitations due to insufficient emotional perception and redundant discrete speech coding. To address the above issues, we present Chain-Talker, a three-stage framework mimicking human cognition: Emotion Understanding derives context-aware emotion descriptors from dialogue history; Semantic Understanding generates compact semantic codes via serialized prediction; and Empathetic Rendering synthesizes expressive speech by integrating both components. To support emotion modeling, we develop CSS-EmCap, an LLM-driven automated pipeline for generating precise conversational speech emotion captions. Experiments on three benchmark datasets demonstrate that Chain-Talker produces more expressive and empathetic speech than existing methods, with CSS-EmCap contributing to reliable emotion modeling. The code and demos are available at: https://github.com/AI-S2-Lab/Chain-Talker.
Abstract:This paper reviews the NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images. This challenge received a wide range of impressive solutions, which are developed and evaluated using our collected real-world Raindrop Clarity dataset. Unlike existing deraining datasets, our Raindrop Clarity dataset is more diverse and challenging in degradation types and contents, which includes day raindrop-focused, day background-focused, night raindrop-focused, and night background-focused degradations. This dataset is divided into three subsets for competition: 14,139 images for training, 240 images for validation, and 731 images for testing. The primary objective of this challenge is to establish a new and powerful benchmark for the task of removing raindrops under varying lighting and focus conditions. There are a total of 361 participants in the competition, and 32 teams submitting valid solutions and fact sheets for the final testing phase. These submissions achieved state-of-the-art (SOTA) performance on the Raindrop Clarity dataset. The project can be found at https://lixinustc.github.io/CVPR-NTIRE2025-RainDrop-Competition.github.io/.
Abstract:This paper introduces a holistic vision-language foundation model tailored for remote sensing, named Falcon. Falcon offers a unified, prompt-based paradigm that effectively executes comprehensive and complex remote sensing tasks. Falcon demonstrates powerful understanding and reasoning abilities at the image, region, and pixel levels. Specifically, given simple natural language instructions and remote sensing images, Falcon can produce impressive results in text form across 14 distinct tasks, i.e., image classification, object detection, segmentation, image captioning, and etc. To facilitate Falcon's training and empower its representation capacity to encode rich spatial and semantic information, we developed Falcon_SFT, a large-scale, multi-task, instruction-tuning dataset in the field of remote sensing. The Falcon_SFT dataset consists of approximately 78 million high-quality data samples, covering 5.6 million multi-spatial resolution and multi-view remote sensing images with diverse instructions. It features hierarchical annotations and undergoes manual sampling verification to ensure high data quality and reliability. Extensive comparative experiments are conducted, which verify that Falcon achieves remarkable performance over 67 datasets and 14 tasks, despite having only 0.7B parameters. We release the complete dataset, code, and model weights at https://github.com/TianHuiLab/Falcon, hoping to help further develop the open-source community.
Abstract:Facial Action Units (AUs) are essential for conveying psychological states and emotional expressions. While automatic AU detection systems leveraging deep learning have progressed, they often overfit to specific datasets and individual features, limiting their cross-domain applicability. To overcome these limitations, we propose a doubly adaptive dropout approach for cross-domain AU detection, which enhances the robustness of convolutional feature maps and spatial tokens against domain shifts. This approach includes a Channel Drop Unit (CD-Unit) and a Token Drop Unit (TD-Unit), which work together to reduce domain-specific noise at both the channel and token levels. The CD-Unit preserves domain-agnostic local patterns in feature maps, while the TD-Unit helps the model identify AU relationships generalizable across domains. An auxiliary domain classifier, integrated at each layer, guides the selective omission of domain-sensitive features. To prevent excessive feature dropout, a progressive training strategy is used, allowing for selective exclusion of sensitive features at any model layer. Our method consistently outperforms existing techniques in cross-domain AU detection, as demonstrated by extensive experimental evaluations. Visualizations of attention maps also highlight clear and meaningful patterns related to both individual and combined AUs, further validating the approach's effectiveness.
Abstract:We consider the problem of learning Nash equilibrial policies for two-player risk-sensitive collision-avoiding interactions. Solving the Hamilton-Jacobi-Isaacs equations of such general-sum differential games in real time is an open challenge due to the discontinuity of equilibrium values on the state space. A common solution is to learn a neural network that approximates the equilibrium Hamiltonian for given system states and actions. The learning, however, is usually supervised and requires a large amount of sample equilibrium policies from different initial states in order to mitigate the risks of collisions. This paper claims two contributions towards more data-efficient learning of equilibrium policies: First, instead of computing Hamiltonian through a value network, we show that the equilibrium co-states have simple structures when collision avoidance dominates the agents' loss functions and system dynamics is linear, and therefore are more data-efficient to learn. Second, we introduce theory-driven active learning to guide data sampling, where the acquisition function measures the compliance of the predicted co-states to Pontryagin's Maximum Principle. On an uncontrolled intersection case, the proposed method leads to more generalizable approximation of the equilibrium policies, and in turn, lower collision probabilities, than the state-of-the-art under the same data acquisition budget.
Abstract:General-sum differential games can approximate values solved by Hamilton-Jacobi-Isaacs (HJI) equations for efficient inference when information is incomplete. However, solving such games through conventional methods encounters the curse of dimensionality (CoD). Physics-informed neural networks (PINNs) offer a scalable approach to alleviate the CoD and approximate values, but there exist convergence issues for value approximations through vanilla PINNs when state constraints lead to values with large Lipschitz constants, particularly in safety-critical applications. In addition to addressing CoD, it is necessary to learn a generalizable value across a parametric space of games, rather than training multiple ones for each specific player-type configuration. To overcome these challenges, we propose a Hybrid Neural Operator (HNO), which is an operator that can map parameter functions for games to value functions. HNO leverages informative supervised data and samples PDE-driven data across entire spatial-temporal space for model refinement. We evaluate HNO on 9D and 13D scenarios with nonlinear dynamics and state constraints, comparing it against a Supervised Neural Operator (a variant of DeepONet). Under the same computational budget and training data, HNO outperforms SNO for safety performance. This work provides a step toward scalable and generalizable value function approximation, enabling real-time inference for complex human-robot or multi-agent interactions.
Abstract:While recent zero-shot text-to-speech (TTS) models have significantly improved speech quality and expressiveness, mainstream systems still suffer from issues related to speech-text alignment modeling: 1) models without explicit speech-text alignment modeling exhibit less robustness, especially for hard sentences in practical applications; 2) predefined alignment-based models suffer from naturalness constraints of forced alignments. This paper introduces \textit{S-DiT}, a TTS system featuring an innovative sparse alignment algorithm that guides the latent diffusion transformer (DiT). Specifically, we provide sparse alignment boundaries to S-DiT to reduce the difficulty of alignment learning without limiting the search space, thereby achieving high naturalness. Moreover, we employ a multi-condition classifier-free guidance strategy for accent intensity adjustment and adopt the piecewise rectified flow technique to accelerate the generation process. Experiments demonstrate that S-DiT achieves state-of-the-art zero-shot TTS speech quality and supports highly flexible control over accent intensity. Notably, our system can generate high-quality one-minute speech with only 8 sampling steps. Audio samples are available at https://sditdemo.github.io/sditdemo/.
Abstract:Human motion video generation has advanced significantly, while existing methods still struggle with accurately rendering detailed body parts like hands and faces, especially in long sequences and intricate motions. Current approaches also rely on fixed resolution and struggle to maintain visual consistency. To address these limitations, we propose HumanDiT, a pose-guided Diffusion Transformer (DiT)-based framework trained on a large and wild dataset containing 14,000 hours of high-quality video to produce high-fidelity videos with fine-grained body rendering. Specifically, (i) HumanDiT, built on DiT, supports numerous video resolutions and variable sequence lengths, facilitating learning for long-sequence video generation; (ii) we introduce a prefix-latent reference strategy to maintain personalized characteristics across extended sequences. Furthermore, during inference, HumanDiT leverages Keypoint-DiT to generate subsequent pose sequences, facilitating video continuation from static images or existing videos. It also utilizes a Pose Adapter to enable pose transfer with given sequences. Extensive experiments demonstrate its superior performance in generating long-form, pose-accurate videos across diverse scenarios.
Abstract:A widely-used technique in designing energy-efficient deep neural network (DNN) accelerators is quantization. Recent progress in this direction has reduced the bitwidths used in DNN down to 2. Meanwhile, many prior works apply approximate multipliers (AppMuls) in designing DNN accelerators to lower their energy consumption. Unfortunately, these works still assume a bitwidth much larger than 2, which falls far behind the state-of-the-art in quantization area and even challenges the meaningfulness of applying AppMuls in DNN accelerators, since a high-bitwidth AppMul consumes much more energy than a low-bitwidth exact multiplier! Thus, an important problem to study is: Can approximate multipliers be effectively applied to quantized DNN models with very low bitwidths? In this work, we give an affirmative answer to this question and present a systematic solution that achieves the answer: FAMES, a fast approximate multiplier substitution method for mixed-precision DNNs. Our experiments demonstrate an average 28.67% energy reduction on state-of-the-art mixed-precision quantized models with bitwidths as low as 2 bits and accuracy losses kept under 1%. Additionally, our approach is up to 300x faster than previous genetic algorithm-based methods.