Abstract:Recent years have witnessed remarkable progress in multimodal learning within computational pathology. Existing models primarily rely on vision and language modalities; however, language alone lacks molecular specificity and offers limited pathological supervision, leading to representational bottlenecks. In this paper, we propose STAMP, a Spatial Transcriptomics-Augmented Multimodal Pathology representation learning framework that integrates spatially-resolved gene expression profiles to enable molecule-guided joint embedding of pathology images and transcriptomic data. Our study shows that self-supervised, gene-guided training provides a robust and task-agnostic signal for learning pathology image representations. Incorporating spatial context and multi-scale information further enhances model performance and generalizability. To support this, we constructed SpaVis-6M, the largest Visium-based spatial transcriptomics dataset to date, and trained a spatially-aware gene encoder on this resource. Leveraging hierarchical multi-scale contrastive alignment and cross-scale patch localization mechanisms, STAMP effectively aligns spatial transcriptomics with pathology images, capturing spatial structure and molecular variation. We validate STAMP across six datasets and four downstream tasks, where it consistently achieves strong performance. These results highlight the value and necessity of integrating spatially resolved molecular supervision for advancing multimodal learning in computational pathology. The code is included in the supplementary materials. The pretrained weights and SpaVis-6M are available at: https://github.com/Hanminghao/STAMP.
Abstract:Multimodal large language models (MLLMs) are increasingly used for real-world tasks involving multi-step reasoning and long-form generation, where reliability requires grounding model outputs in heterogeneous input sources and verifying individual factual claims. However, existing multimodal grounding benchmarks and evaluation methods focus on simplified, observation-based scenarios or limited modalities and fail to assess attribution in complex multimodal reasoning. We introduce MuRGAt (Multimodal Reasoning with Grounded Attribution), a benchmark for evaluating fact-level multimodal attribution in settings that require reasoning beyond direct observation. Given inputs spanning video, audio, and other modalities, MuRGAt requires models to generate answers with explicit reasoning and precise citations, where each citation specifies both modality and temporal segments. To enable reliable assessment, we introduce an automatic evaluation framework that strongly correlates with human judgments. Benchmarking with human and automated scores reveals that even strong MLLMs frequently hallucinate citations despite correct reasoning. Moreover, we observe a key trade-off: increasing reasoning depth or enforcing structured grounding often degrades accuracy, highlighting a significant gap between internal reasoning and verifiable attribution.
Abstract:Live streaming platforms require real-time monitoring and reaction to social signals, utilizing partial and asynchronous evidence from video, text, and audio. We propose StreamSense, a streaming detector that couples a lightweight streaming encoder with selective routing to a Vision-Language Model (VLM) expert. StreamSense handles most timestamps with the lightweight streaming encoder, escalates hard/ambiguous cases to the VLM, and defers decisions when context is insufficient. The encoder is trained using (i) a cross-modal contrastive term to align visual/audio cues with textual signals, and (ii) an IoU-weighted loss that down-weights poorly overlapping target segments, mitigating label interference across segment boundaries. We evaluate StreamSense on multiple social streaming detection tasks (e.g., sentiment classification and hate content moderation), and the results show that StreamSense achieves higher accuracy than VLM-only streaming while only occasionally invoking the VLM, thereby reducing average latency and compute. Our results indicate that selective escalation and deferral are effective primitives for understanding streaming social tasks. Code is publicly available on GitHub.
Abstract:We study Sparse Signal Recovery (SSR) methods for multichannel imaging with compressed {forward and backward} operators that preserve reconstruction accuracy. We propose a Compressed Block-Convolutional (C-BC) measurement model based on a low-rank Convolutional Neural Network (CNN) decomposition that is analytically initialized from a low-rank factorization of physics-derived forward/backward operators in time delay-based measurements. We use Orthogonal Matching Pursuit (OMP) to select a compact set of basis filters from the analytic model and compute linear mixing coefficients to approximate the full model. We consider the Learned Iterative Shrinkage-Thresholding Algorithm (LISTA) network as a representative example for which the C-BC-LISTA extension is presented. In simulated multichannel ultrasound imaging across multiple Signal-to-Noise Ratios (SNRs), C-BC-LISTA requires substantially fewer parameters and smaller model size than other state-of-the-art (SOTA) methods while improving reconstruction accuracy. In ablations over OMP, Singular Value Decomposition (SVD)-based, and random initializations, OMP-initialized structured compression performs best, yielding the most efficient training and the best performance.
Abstract:Web agents have demonstrated strong performance on a wide range of web-based tasks. However, existing research on the effect of environmental variation has mostly focused on robustness to adversarial attacks, with less attention to agents' preferences in benign scenarios. Although early studies have examined how textual attributes influence agent behavior, a systematic understanding of how visual attributes shape agent decision-making remains limited. To address this, we introduce VAF, a controlled evaluation pipeline for quantifying how webpage Visual Attribute Factors influence web-agent decision-making. Specifically, VAF consists of three stages: (i) variant generation, which ensures the variants share identical semantics as the original item while only differ in visual attributes; (ii) browsing interaction, where agents navigate the page via scrolling and clicking the interested item, mirroring how human users browse online; (iii) validating through both click action and reasoning from agents, which we use the Target Click Rate and Target Mention Rate to jointly evaluate the effect of visual attributes. By quantitatively measuring the decision-making difference between the original and variant, we identify which visual attributes influence agents' behavior most. Extensive experiments, across 8 variant families (48 variants total), 5 real-world websites (including shopping, travel, and news browsing), and 4 representative web agents, show that background color contrast, item size, position, and card clarity have a strong influence on agents' actions, whereas font styling, text color, and item image clarity exhibit minor effects.
Abstract:Recent advances in multimodal learning have significantly enhanced the reasoning capabilities of vision-language models (VLMs). However, state-of-the-art approaches rely heavily on large-scale human-annotated datasets, which are costly and time-consuming to acquire. To overcome this limitation, we introduce V-Zero, a general post-training framework that facilitates self-improvement using exclusively unlabeled images. V-Zero establishes a co-evolutionary loop by instantiating two distinct roles: a Questioner and a Solver. The Questioner learns to synthesize high-quality, challenging questions by leveraging a dual-track reasoning reward that contrasts intuitive guesses with reasoned results. The Solver is optimized using pseudo-labels derived from majority voting over its own sampled responses. Both roles are trained iteratively via Group Relative Policy Optimization (GRPO), driving a cycle of mutual enhancement. Remarkably, without a single human annotation, V-Zero achieves consistent performance gains on Qwen2.5-VL-7B-Instruct, improving visual mathematical reasoning by +1.7 and general vision-centric by +2.6, demonstrating the potential of self-improvement in multimodal systems. Code is available at https://github.com/SatonoDia/V-Zero




Abstract:As embodied intelligence emerges as a core frontier in artificial intelligence research, simulation platforms must evolve beyond low-level physical interactions to capture complex, human-centered social behaviors. We introduce FreeAskWorld, an interactive simulation framework that integrates large language models (LLMs) for high-level behavior planning and semantically grounded interaction, informed by theories of intention and social cognition. Our framework supports scalable, realistic human-agent simulations and includes a modular data generation pipeline tailored for diverse embodied tasks.To validate the framework, we extend the classic Vision-and-Language Navigation (VLN) task into a interaction enriched Direction Inquiry setting, wherein agents can actively seek and interpret navigational guidance. We present and publicly release FreeAskWorld, a large-scale benchmark dataset comprising reconstructed environments, six diverse task types, 16 core object categories, 63,429 annotated sample frames, and more than 17 hours of interaction data to support training and evaluation of embodied AI systems. We benchmark VLN models, and human participants under both open-loop and closed-loop settings. Experimental results demonstrate that models fine-tuned on FreeAskWorld outperform their original counterparts, achieving enhanced semantic understanding and interaction competency. These findings underscore the efficacy of socially grounded simulation frameworks in advancing embodied AI systems toward sophisticated high-level planning and more naturalistic human-agent interaction. Importantly, our work underscores that interaction itself serves as an additional information modality.
Abstract:Moving infrared small target detection is a key component of infrared search and tracking systems, yet it remains extremely challenging due to low signal-to-clutter ratios, severe target-background imbalance, and weak discriminative features. Existing deep learning methods primarily focus on spatio-temporal feature aggregation, but their gains are limited, revealing that the fundamental bottleneck lies in ambiguous per-frame feature representations rather than spatio-temporal modeling itself. Motivated by this insight, we propose BP-FPN, a backpropagation-driven feature pyramid architecture that fundamentally rethinks feature learning for small target. BP-FPN introduces Gradient-Isolated Low-Level Shortcut (GILS) to efficiently incorporate fine-grained target details without inducing shortcut learning, and Directional Gradient Regularization (DGR) to enforce hierarchical feature consistency during backpropagation. The design is theoretically grounded, introduces negligible computational overhead, and can be seamlessly integrated into existing frameworks. Extensive experiments on multiple public datasets show that BP-FPN consistently establishes new state-of-the-art performance. To the best of our knowledge, it is the first FPN designed for this task entirely from the backpropagation perspective.




Abstract:Lead (Pb) is a typical low-melting-point ductile metal and serves as an important model material in the study of dynamic responses. Under shock-wave loading, its dynamic mechanical behavior comprises two key phenomena: plastic deformation and shock induced phase transitions. The underlying mechanisms of these processes are still poorly understood. Revealing these mechanisms remains challenging for experimental approaches. Non-equilibrium molecular dynamics (NEMD) simulations are an alternative theoretical tool for studying dynamic responses, as they capture atomic-scale mechanisms such as defect evolution and deformation pathways. However, due to the limited accuracy of empirical interatomic potentials, the reliability of previous NEMD studies is questioned. Using our newly developed machine learning potential for Pb-Sn alloys, we revisited the microstructure evolution in response to shock loading under various shock orientations. The results reveal that shock loading along the [001] orientation of Pb exhibits a fast, reversible, and massive phase transition and stacking fault evolution. The behavior of Pb differs from previous studies by the absence of twinning during plastic deformation. Loading along the [011] orientation leads to slow, irreversible plastic deformation, and a localized FCC-BCC phase transition in the Pitsch orientation relationship. This study provides crucial theoretical insights into the dynamic mechanical response of Pb, offering a theoretical input for understanding the microstructure-performance relationship under extreme conditions.




Abstract:Accurate detection of offensive content on social media demands high-quality labeled data; however, such data is often scarce due to the low prevalence of offensive instances and the high cost of manual annotation. To address this low-resource challenge, we propose a self-training framework that leverages abundant unlabeled data through collaborative pseudo-labeling. Starting with a lightweight classifier trained on limited labeled data, our method iteratively assigns pseudo-labels to unlabeled instances with the support of Multi-Agent Vision-Language Models (MA-VLMs). Un-labeled data on which the classifier and MA-VLMs agree are designated as the Agreed-Unknown set, while conflicting samples form the Disagreed-Unknown set. To enhance label reliability, MA-VLMs simulate dual perspectives, moderator and user, capturing both regulatory and subjective viewpoints. The classifier is optimized using a novel Positive-Negative-Unlabeled (PNU) loss, which jointly exploits labeled, Agreed-Unknown, and Disagreed-Unknown data while mitigating pseudo-label noise. Experiments on benchmark datasets demonstrate that our framework substantially outperforms baselines under limited supervision and approaches the performance of large-scale models