Tsinghua University
Abstract:Text-to-image (T2I) models have significantly advanced the development of artificial intelligence, enabling the generation of high-quality images in diverse contexts based on specific text prompts. However, existing T2I-based methods often struggle to accurately reproduce the appearance of individuals from a reference image and to create novel representations of those individuals in various settings. To address this, we leverage the pre-trained UNet from Stable Diffusion to incorporate the target face image directly into the generation process. Our approach diverges from prior methods that depend on fixed encoders or static face embeddings, which often fail to bridge encoding gaps. Instead, we capitalize on UNet's sophisticated encoding capabilities to process reference images across multiple scales. By innovatively altering the cross-attention layers of the UNet, we effectively fuse individual identities into the generative process. This strategic integration of facial features across various scales not only enhances the robustness and consistency of the generated images but also facilitates efficient multi-reference and multi-identity generation. Our method sets a new benchmark in identity-preserving image generation, delivering state-of-the-art results in similarity metrics while maintaining prompt alignment.
Abstract:Very low-resolution face recognition is challenging due to the serious loss of informative facial details in resolution degradation. In this paper, we propose a generative-discriminative representation distillation approach that combines generative representation with cross-resolution aligned knowledge distillation. This approach facilitates very low-resolution face recognition by jointly distilling generative and discriminative models via two distillation modules. Firstly, the generative representation distillation takes the encoder of a diffusion model pretrained for face super-resolution as the generative teacher to supervise the learning of the student backbone via feature regression, and then freezes the student backbone. After that, the discriminative representation distillation further considers a pretrained face recognizer as the discriminative teacher to supervise the learning of the student head via cross-resolution relational contrastive distillation. In this way, the general backbone representation can be transformed into discriminative head representation, leading to a robust and discriminative student model for very low-resolution face recognition. Our approach improves the recovery of the missing details in very low-resolution faces and achieves better knowledge transfer. Extensive experiments on face datasets demonstrate that our approach enhances the recognition accuracy of very low-resolution faces, showcasing its effectiveness and adaptability.
Abstract:Recent foundation models are capable of handling multiple machine learning (ML) tasks and multiple data modalities with the unified base model structure and several specialized model components. However, the development of such multi-task (MT) multi-modal (MM) models poses significant model management challenges to existing training systems. Due to the sophisticated model architecture and the heterogeneous workloads of different ML tasks and data modalities, training these models usually requires massive GPU resources and suffers from sub-optimal system efficiency. In this paper, we investigate how to achieve high-performance training of large-scale MT MM models through data heterogeneity-aware model management optimization. The key idea is to decompose the model execution into stages and address the joint optimization problem sequentially, including both heterogeneity-aware workload parallelization and dependency-driven execution scheduling. Based on this, we build a prototype system and evaluate it on various large MT MM models. Experiments demonstrate the superior performance and efficiency of our system, with speedup ratio up to 71% compared to state-of-the-art training systems.
Abstract:While deep models have proved successful in learning rich knowledge from massive well-annotated data, they may pose a privacy leakage risk in practical deployment. It is necessary to find an effective trade-off between high utility and strong privacy. In this work, we propose a discriminative-generative distillation approach to learn privacy-preserving deep models. Our key idea is taking models as bridge to distill knowledge from private data and then transfer it to learn a student network via two streams. First, discriminative stream trains a baseline classifier on private data and an ensemble of teachers on multiple disjoint private subsets, respectively. Then, generative stream takes the classifier as a fixed discriminator and trains a generator in a data-free manner. After that, the generator is used to generate massive synthetic data which are further applied to train a variational autoencoder (VAE). Among these synthetic data, a few of them are fed into the teacher ensemble to query labels via differentially private aggregation, while most of them are embedded to the trained VAE for reconstructing synthetic data. Finally, a semi-supervised student learning is performed to simultaneously handle two tasks: knowledge transfer from the teachers with distillation on few privately labeled synthetic data, and knowledge enhancement with tangent-normal adversarial regularization on many triples of reconstructed synthetic data. In this way, our approach can control query cost over private data and mitigate accuracy degradation in a unified manner, leading to a privacy-preserving student model. Extensive experiments and analysis clearly show the effectiveness of the proposed approach.
Abstract:The facility location problem (FLP) is a classical combinatorial optimization challenge aimed at strategically laying out facilities to maximize their accessibility. In this paper, we propose a reinforcement learning method tailored to solve large-scale urban FLP, capable of producing near-optimal solutions at superfast inference speed. We distill the essential swap operation from local search, and simulate it by intelligently selecting edges on a graph of urban regions, guided by a knowledge-informed graph neural network, thus sidestepping the need for heavy computation of local search. Extensive experiments on four US cities with different geospatial conditions demonstrate that our approach can achieve comparable performance to commercial solvers with less than 5\% accessibility loss, while displaying up to 1000 times speedup. We deploy our model as an online geospatial application at https://huggingface.co/spaces/randommmm/MFLP.
Abstract:Human mobility prediction plays a crucial role in various real-world applications. Although deep learning based models have shown promising results over the past decade, their reliance on extensive private mobility data for training and their inability to perform zero-shot predictions, have hindered further advancements. Recently, attempts have been made to apply large language models (LLMs) to mobility prediction task. However, their performance has been constrained by the absence of a systematic design of workflow. They directly generate the final output using LLMs, which limits the potential of LLMs to uncover complex mobility patterns and underestimates their extensive reserve of global geospatial knowledge. In this paper, we introduce AgentMove, a systematic agentic prediction framework to achieve generalized mobility prediction for any cities worldwide. In AgentMove, we first decompose the mobility prediction task into three sub-tasks and then design corresponding modules to complete these subtasks, including spatial-temporal memory for individual mobility pattern mining, world knowledge generator for modeling the effects of urban structure and collective knowledge extractor for capturing the shared patterns among population. Finally, we combine the results of three modules and conduct a reasoning step to generate the final predictions. Extensive experiments on mobility data from two sources in 12 cities demonstrate that AgentMove outperforms the best baseline more than 8% in various metrics and it shows robust predictions with various LLMs as base and also less geographical bias across cities. Codes and data can be found in https://github.com/tsinghua-fib-lab/AgentMove.
Abstract:Along with the prosperity of generative artificial intelligence (AI), its potential for solving conventional challenges in wireless communications has also surfaced. Inspired by this trend, we investigate the application of the advanced diffusion models (DMs), a representative class of generative AI models, to high dimensional wireless channel estimation. By capturing the structure of multiple-input multiple-output (MIMO) wireless channels via a deep generative prior encoded by DMs, we develop a novel posterior inference method for channel reconstruction. We further adapt the proposed method to recover channel information from low-resolution quantized measurements. Additionally, to enhance the over-the-air viability, we integrate the DM with the unsupervised Stein's unbiased risk estimator to enable learning from noisy observations and circumvent the requirements for ground truth channel data that is hardly available in practice. Results reveal that the proposed estimator achieves high-fidelity channel recovery while reducing estimation latency by a factor of 10 compared to state-of-the-art schemes, facilitating real-time implementation. Moreover, our method outperforms existing estimators while reducing the pilot overhead by half, showcasing its scalability to ultra-massive antenna arrays.
Abstract:Mobile devices, especially smartphones, can support rich functions and have developed into indispensable tools in daily life. With the rise of generative AI services, smartphones can potentially transform into personalized assistants, anticipating user needs and scheduling services accordingly. Predicting user intents on smartphones, and reflecting anticipated activities based on past interactions and context, remains a pivotal step towards this vision. Existing research predominantly focuses on specific domains, neglecting the challenge of modeling diverse event sequences across dynamic contexts. Leveraging pre-trained language models (PLMs) offers a promising avenue, yet adapting PLMs to on-device user intent prediction presents significant challenges. To address these challenges, we propose PITuning, a Population-to-Individual Tuning framework. PITuning enhances common pattern extraction through dynamic event-to-intent transition modeling and addresses long-tailed preferences via adaptive unlearning strategies. Experimental results on real-world datasets demonstrate PITuning's superior intent prediction performance, highlighting its ability to capture long-tailed preferences and its practicality for on-device prediction scenarios.
Abstract:Predicting the resilience of complex networks, which represents the ability to retain fundamental functionality amidst external perturbations or internal failures, plays a critical role in understanding and improving real-world complex systems. Traditional theoretical approaches grounded in nonlinear dynamical systems rely on prior knowledge of network dynamics. On the other hand, data-driven approaches frequently encounter the challenge of insufficient labeled data, a predicament commonly observed in real-world scenarios. In this paper, we introduce a novel resilience prediction framework for complex networks, designed to tackle this issue through generative data augmentation of network topology and dynamics. The core idea is the strategic utilization of the inherent joint distribution present in unlabeled network data, facilitating the learning process of the resilience predictor by illuminating the relationship between network topology and dynamics. Experiment results on three network datasets demonstrate that our proposed framework TDNetGen can achieve high prediction accuracy up to 85%-95%. Furthermore, the framework still demonstrates a pronounced augmentation capability in extreme low-data regimes, thereby underscoring its utility and robustness in enhancing the prediction of network resilience. We have open-sourced our code in the following link, https://github.com/tsinghua-fib-lab/TDNetGen.
Abstract:The increasing parameters and expansive dataset of large language models (LLMs) highlight the urgent demand for a technical solution to audit the underlying privacy risks and copyright issues associated with LLMs. Existing studies have partially addressed this need through an exploration of the pre-training data detection problem, which is an instance of a membership inference attack (MIA). This problem involves determining whether a given piece of text has been used during the pre-training phase of the target LLM. Although existing methods have designed various sophisticated MIA score functions to achieve considerable detection performance in pre-trained LLMs, how to achieve high-confidence detection and how to perform MIA on aligned LLMs remain challenging. In this paper, we propose MIA-Tuner, a novel instruction-based MIA method, which instructs LLMs themselves to serve as a more precise pre-training data detector internally, rather than design an external MIA score function. Furthermore, we design two instruction-based safeguards to respectively mitigate the privacy risks brought by the existing methods and MIA-Tuner. To comprehensively evaluate the most recent state-of-the-art LLMs, we collect a more up-to-date MIA benchmark dataset, named WIKIMIA-24, to replace the widely adopted benchmark WIKIMIA. We conduct extensive experiments across various aligned and unaligned LLMs over the two benchmark datasets. The results demonstrate that MIA-Tuner increases the AUC of MIAs from 0.7 to a significantly high level of 0.9.