Tsinghua University
Abstract:Few-shot class-incremental learning (FSCIL) aims to continually adapt a model on a limited number of new-class examples, facing two well-known challenges: catastrophic forgetting and overfitting to new classes. Existing methods tend to freeze more parts of network components and finetune others with an extra memory during incremental sessions. These methods emphasize preserving prior knowledge to ensure proficiency in recognizing old classes, thereby mitigating catastrophic forgetting. Meanwhile, constraining fewer parameters can help in overcoming overfitting with the assistance of prior knowledge. Following previous methods, we retain more prior knowledge and propose a prior knowledge-infused neural network (PKI) to facilitate FSCIL. PKI consists of a backbone, an ensemble of projectors, a classifier, and an extra memory. In each incremental session, we build a new projector and add it to the ensemble. Subsequently, we finetune the new projector and the classifier jointly with other frozen network components, ensuring the rich prior knowledge is utilized effectively. By cascading projectors, PKI integrates prior knowledge accumulated from previous sessions and learns new knowledge flexibly, which helps to recognize old classes and efficiently learn new classes. Further, to reduce the resource consumption associated with keeping many projectors, we design two variants of the prior knowledge-infused neural network (PKIV-1 and PKIV-2) to trade off a balance between resource consumption and performance by reducing the number of projectors. Extensive experiments on three popular benchmarks demonstrate that our approach outperforms state-of-the-art methods.
Abstract:Few-shot class-incremental learning (FSCIL) aims to continuously recognize novel classes under limited data, which suffers from the key stability-plasticity dilemma: balancing the retention of old knowledge with the acquisition of new knowledge. To address this issue, we divide the task into two different stages and propose a framework termed Static-Dynamic Collaboration (SDC) to achieve a better trade-off between stability and plasticity. Specifically, our method divides the normal pipeline of FSCIL into Static Retaining Stage (SRS) and Dynamic Learning Stage (DLS), which harnesses old static and incremental dynamic class information, respectively. During SRS, we train an initial model with sufficient data in the base session and preserve the key part as static memory to retain fundamental old knowledge. During DLS, we introduce an extra dynamic projector jointly trained with the previous static memory. By employing both stages, our method achieves improved retention of old knowledge while continuously adapting to new classes. Extensive experiments on three public benchmarks and a real-world application dataset demonstrate that our method achieves state-of-the-art performance against other competitors.
Abstract:Few-shot class-incremental learning (FSCIL) receives significant attention from the public to perform classification continuously with a few training samples, which suffers from the key catastrophic forgetting problem. Existing methods usually employ an external memory to store previous knowledge and treat it with incremental classes equally, which cannot properly preserve previous essential knowledge. To solve this problem and inspired by recent distillation works on knowledge transfer, we propose a framework termed \textbf{C}onstrained \textbf{D}ataset \textbf{D}istillation (\textbf{CD$^2$}) to facilitate FSCIL, which includes a dataset distillation module (\textbf{DDM}) and a distillation constraint module~(\textbf{DCM}). Specifically, the DDM synthesizes highly condensed samples guided by the classifier, forcing the model to learn compacted essential class-related clues from a few incremental samples. The DCM introduces a designed loss to constrain the previously learned class distribution, which can preserve distilled knowledge more sufficiently. Extensive experiments on three public datasets show the superiority of our method against other state-of-the-art competitors.
Abstract:Inferring a network's evolutionary history from a single final snapshot with limited temporal annotations is fundamental yet challenging. Existing approaches predominantly rely on topology alone, which often provides insufficient and noisy cues. This paper leverages network steady-state dynamics -- converged node states under a given dynamical process -- as an additional and widely accessible observation for network evolution history inference. We propose CS$^2$, which explicitly models structure-state coupling to capture how topology modulates steady states and how the two signals jointly improve edge discrimination for formation-order recovery. Experiments on six real temporal networks, evaluated under multiple dynamical processes, show that CS$^2$ consistently outperforms strong baselines, improving pairwise edge precedence accuracy by 4.0% on average and global ordering consistency (Spearman-$ρ$) by 7.7% on average. CS$^2$ also more faithfully recovers macroscopic evolution trajectories such as clustering formation, degree heterogeneity, and hub growth. Moreover, a steady-state-only variant remains competitive when reliable topology is limited, highlighting steady states as an independent signal for evolution inference.
Abstract:Unmanned aerial vehicles (UAVs) have emerged as powerful embodied agents. One of the core abilities is autonomous navigation in large-scale three-dimensional environments. Existing navigation policies, however, are typically optimized for low-level objectives such as obstacle avoidance and trajectory smoothness, lacking the ability to incorporate high-level semantics into planning. To bridge this gap, we propose ANWM, an aerial navigation world model that predicts future visual observations conditioned on past frames and actions, thereby enabling agents to rank candidate trajectories by their semantic plausibility and navigational utility. ANWM is trained on 4-DoF UAV trajectories and introduces a physics-inspired module: Future Frame Projection (FFP), which projects past frames into future viewpoints to provide coarse geometric priors. This module mitigates representational uncertainty in long-distance visual generation and captures the mapping between 3D trajectories and egocentric observations. Empirical results demonstrate that ANWM significantly outperforms existing world models in long-distance visual forecasting and improves UAV navigation success rates in large-scale environments.




Abstract:Traffic simulation is important for transportation optimization and policy making. While existing simulators such as SUMO and MATSim offer fully-featured platforms and utilities, users without too much knowledge about these platforms often face significant challenges when conducting experiments from scratch and applying them to their daily work. To solve this challenge, we propose TrafficSimAgent, an LLM-based agent framework that serves as an expert in experiment design and decision optimization for general-purpose traffic simulation tasks. The framework facilitates execution through cross-level collaboration among expert agents: high-level expert agents comprehend natural language instructions with high flexibility, plan the overall experiment workflow, and invoke corresponding MCP-compatible tools on demand; meanwhile, low-level expert agents select optimal action plans for fundamental elements based on real-time traffic conditions. Extensive experiments across multiple scenarios show that TrafficSimAgent effectively executes simulations under various conditions and consistently produces reasonable outcomes even when user instructions are ambiguous. Besides, the carefully designed expert-level autonomous decision-driven optimization in TrafficSimAgent yields superior performance when compared with other systems and SOTA LLM based methods.




Abstract:Fine-grained fire prediction plays a crucial role in emergency response. Infrared images and fire masks provide complementary thermal and boundary information, yet current methods are predominantly limited to binary mask modeling with inherent signal sparsity, failing to capture the complex dynamics of fire. While world models show promise in video generation, their physical inconsistencies pose significant challenges for fire forecasting. This paper introduces PhysFire-WM, a Physics-informed World Model for emulating Fire spread dynamics. Our approach internalizes combustion dynamics by encoding structured priors from a Physical Simulator to rectify physical discrepancies, coupled with a Cross-task Collaborative Training strategy (CC-Train) that alleviates the issue of limited information in mask-based modeling. Through parameter sharing and gradient coordination, CC-Train effectively integrates thermal radiation dynamics and spatial boundary delineation, enhancing both physical realism and geometric accuracy. Extensive experiments on a fine-grained multimodal fire dataset demonstrate the superior accuracy of PhysFire-WM in fire spread prediction. Validation underscores the importance of physical priors and cross-task collaboration, providing new insights for applying physics-informed world models to disaster prediction.




Abstract:Large-scale EEG foundation models have shown strong generalization across a range of downstream tasks, but their training remains resource-intensive due to the volume and variable quality of EEG data. In this work, we introduce EEG-DLite, a data distillation framework that enables more efficient pre-training by selectively removing noisy and redundant samples from large EEG datasets. EEG-DLite begins by encoding EEG segments into compact latent representations using a self-supervised autoencoder, allowing sample selection to be performed efficiently and with reduced sensitivity to noise. Based on these representations, EEG-DLite filters out outliers and minimizes redundancy, resulting in a smaller yet informative subset that retains the diversity essential for effective foundation model training. Through extensive experiments, we demonstrate that training on only 5 percent of a 2,500-hour dataset curated with EEG-DLite yields performance comparable to, and in some cases better than, training on the full dataset across multiple downstream tasks. To our knowledge, this is the first systematic study of pre-training data distillation in the context of EEG foundation models. EEG-DLite provides a scalable and practical path toward more effective and efficient physiological foundation modeling. The code is available at https://github.com/t170815518/EEG-DLite.
Abstract:Paths generated by A* and other graph-search-based planners are widely used in the robotic field. Due to the restricted node-expansion directions, the resulting paths are usually not the shortest. Besides, unnecessary heading changes, or zig-zag patterns, exist even when no obstacle is nearby, which is inconsistent with the human intuition that the path segments should be straight in wide-open space due to the absence of obstacles. This article puts forward a general and systematic post-processing algorithm for A* and other graph-search-based planners. The A* post-processing algorithm, called APP, is developed based on the costmap, which is widely used in commercial service robots. First, a bidirectional vertices reduction algorithm is proposed to tackle the asymm- etry of the path and the environments. During the forward and backward vertices reduction, a thorough shortcut strategy is put forward to improve the path-shortening performance and avoid unnecessary heading changes. Second, an iterative path perturbation algorithm is adopted to locally reduce the number of unnecessary heading changes and improve the path smooth- ness. Comparative experiments are then carried out to validate the superiority of the proposed method. Quantitative performance indexes show that APP outperforms the existing methods in planning time, path length as well as the number of unnecessary heading changes. Finally, field navigation experiments are carried out to verify the practicability of APP.
Abstract:Collaborative Filtering~(CF) plays a crucial role in modern recommender systems, leveraging historical user-item interactions to provide personalized suggestions. However, CF-based methods often encounter biases due to imbalances in training data. This phenomenon makes CF-based methods tend to prioritize recommending popular items and performing unsatisfactorily on inactive users. Existing works address this issue by rebalancing training samples, reranking recommendation results, or making the modeling process robust to the bias. Despite their effectiveness, these approaches can compromise accuracy or be sensitive to weighting strategies, making them challenging to train. In this paper, we deeply analyze the causes and effects of the biases and propose a framework to alleviate biases in recommendation from the perspective of representation distribution, namely Group-Alignment and Global-Uniformity Enhanced Representation Learning for Debiasing Recommendation (AURL). Specifically, we identify two significant problems in the representation distribution of users and items, namely group-discrepancy and global-collapse. These two problems directly lead to biases in the recommendation results. To this end, we propose two simple but effective regularizers in the representation space, respectively named group-alignment and global-uniformity. The goal of group-alignment is to bring the representation distribution of long-tail entities closer to that of popular entities, while global-uniformity aims to preserve the information of entities as much as possible by evenly distributing representations. Our method directly optimizes both the group-alignment and global-uniformity regularization terms to mitigate recommendation biases. Extensive experiments on three real datasets and various recommendation backbones verify the superiority of our proposed framework.