Abstract:Graph generation aims to sample discrete node and edge attributes while satisfying coupled structural constraints. Diffusion models for graphs often adopt largely factorized forward-noising, and many flow-matching methods start from factorized reference noise and coordinate-wise interpolation, so node-edge coupling is not encoded by the generative geometry and must be recovered implicitly by the core network, which can be brittle after discrete decoding. Bayesian Flow Networks (BFNs) evolve distribution parameters and naturally support discrete generation. But classical BFNs typically rely on factorized beliefs and independent channels, which limit geometric evidence fusion. We propose Variational Bayesian Flow Network (VBFN), which performs a variational lifting to a tractable joint Gaussian variational belief family governed by structured precisions. Each Bayesian update reduces to solving a symmetric positive definite linear system, enabling coupled node and edge updates within a single fusion step. We construct sample-agnostic sparse precisions from a representation-induced dependency graph, thereby avoiding label leakage while enforcing node-edge consistency. On synthetic and molecular graph datasets, VBFN improves fidelity and diversity, and surpasses baseline methods.
Abstract:Global air quality forecasting grapples with extreme spatial heterogeneity and the poor generalization of existing transductive models to unseen regions. To tackle this, we propose OmniAir, a semantic topology learning framework tailored for global station-level prediction. By encoding invariant physical environmental attributes into generalizable station identities and dynamically constructing adaptive sparse topologies, our approach effectively captures long-range non-Euclidean correlations and physical diffusion patterns across unevenly distributed global networks. We further curate WorldAir, a massive dataset covering over 7,800 stations worldwide. Extensive experiments show that OmniAir achieves state-of-the-art performance against 18 baselines, maintaining high efficiency and scalability with speeds nearly 10 times faster than existing models, while effectively bridging the monitoring gap in data-sparse regions.
Abstract:Text anomaly detection (TAD) plays a critical role in various language-driven real-world applications, including harmful content moderation, phishing detection, and spam review filtering. While two-step "embedding-detector" TAD methods have shown state-of-the-art performance, their effectiveness is often limited by the use of a single embedding model and the lack of adaptability across diverse datasets and anomaly types. To address these limitations, we propose to exploit the embeddings from multiple pretrained language models and integrate them into $MCA^2$, a multi-view TAD framework. $MCA^2$ adopts a multi-view reconstruction model to effectively extract normal textual patterns from multiple embedding perspectives. To exploit inter-view complementarity, a contrastive collaboration module is designed to leverage and strengthen the interactions across different views. Moreover, an adaptive allocation module is developed to automatically assign the contribution weight of each view, thereby improving the adaptability to diverse datasets. Extensive experiments on 10 benchmark datasets verify the effectiveness of $MCA^2$ against strong baselines. The source code of $MCA^2$ is available at https://github.com/yankehan/MCA2.
Abstract:Multi-Agent Systems (MAS) offer a powerful paradigm for solving complex problems, yet their performance is critically dependent on the design of their underlying collaboration topology. As MAS become increasingly deployed in web services (e.g., search engines), designing adaptive topologies for diverse cross-domain user queries becomes essential. Current graph learning-based design methodologies often adhere to a "one-for-one" paradigm, where a specialized model is trained for each specific task domain. This approach suffers from poor generalization to unseen domains and fails to leverage shared structural knowledge across different tasks. To address this, we propose OFA-TAD, a one-for-all framework that generates adaptive collaboration graphs for any task described in natural language through a single universal model. Our approach integrates a Task-Aware Graph State Encoder (TAGSE) that filters task-relevant node information via sparse gating, and a Mixture-of-Experts (MoE) architecture that dynamically selects specialized sub-networks to drive node and edge prediction. We employ a three-stage training strategy: unconditional pre-training on canonical topologies for structural priors, large-scale conditional pre-training on LLM-generated datasets for task-topology mappings, and supervised fine-tuning on empirically validated graphs. Experiments across six diverse benchmarks show that OFA-TAD significantly outperforms specialized one-for-one models, generating highly adaptive MAS topologies. Code: https://github.com/Shiy-Li/OFA-MAS.
Abstract:Visual token compression is widely adopted to improve the inference efficiency of Large Vision-Language Models (LVLMs), enabling their deployment in latency-sensitive and resource-constrained scenarios. However, existing work has mainly focused on efficiency and performance, while the security implications of visual token compression remain largely unexplored. In this work, we first reveal that visual token compression substantially degrades the robustness of LVLMs: models that are robust under uncompressed inference become highly vulnerable once compression is enabled. These vulnerabilities are state-specific; failure modes emerge only in the compressed setting and completely disappear when compression is disabled, making them particularly hidden and difficult to diagnose. By analyzing the key stages of the compression process, we identify instability in token importance ranking as the primary cause of this robustness degradation. Small and imperceptible perturbations can significantly alter token rankings, leading the compression mechanism to mistakenly discard task-critical information and ultimately causing model failure. Motivated by this observation, we propose a Compression-Aware Attack to systematically study and exploit this vulnerability. CAA directly targets the token selection mechanism and induces failures exclusively under compressed inference. We further extend this approach to more realistic black-box settings and introduce Transfer CAA, where neither the target model nor the compression configuration is accessible. We further evaluate potential defenses and find that they provide only limited protection. Extensive experiments across models, datasets, and compression methods show that visual token compression significantly undermines robustness, revealing a previously overlooked efficiency-security trade-off.
Abstract:Large language model (LLM)-based multi-agent systems (MAS) have shown strong capabilities in solving complex tasks. As MAS become increasingly autonomous in various safety-critical tasks, detecting malicious agents has become a critical security concern. Although existing graph anomaly detection (GAD)-based defenses can identify anomalous agents, they mainly rely on coarse sentence-level information and overlook fine-grained lexical cues, leading to suboptimal performance. Moreover, the lack of interpretability in these methods limits their reliability and real-world applicability. To address these limitations, we propose XG-Guard, an explainable and fine-grained safeguarding framework for detecting malicious agents in MAS. To incorporate both coarse and fine-grained textual information for anomalous agent identification, we utilize a bi-level agent encoder to jointly model the sentence- and token-level representations of each agent. A theme-based anomaly detector further captures the evolving discussion focus in MAS dialogues, while a bi-level score fusion mechanism quantifies token-level contributions for explanation. Extensive experiments across diverse MAS topologies and attack scenarios demonstrate robust detection performance and strong interpretability of XG-Guard.
Abstract:Memory has emerged, and will continue to remain, a core capability of foundation model-based agents. As research on agent memory rapidly expands and attracts unprecedented attention, the field has also become increasingly fragmented. Existing works that fall under the umbrella of agent memory often differ substantially in their motivations, implementations, and evaluation protocols, while the proliferation of loosely defined memory terminologies has further obscured conceptual clarity. Traditional taxonomies such as long/short-term memory have proven insufficient to capture the diversity of contemporary agent memory systems. This work aims to provide an up-to-date landscape of current agent memory research. We begin by clearly delineating the scope of agent memory and distinguishing it from related concepts such as LLM memory, retrieval augmented generation (RAG), and context engineering. We then examine agent memory through the unified lenses of forms, functions, and dynamics. From the perspective of forms, we identify three dominant realizations of agent memory, namely token-level, parametric, and latent memory. From the perspective of functions, we propose a finer-grained taxonomy that distinguishes factual, experiential, and working memory. From the perspective of dynamics, we analyze how memory is formed, evolved, and retrieved over time. To support practical development, we compile a comprehensive summary of memory benchmarks and open-source frameworks. Beyond consolidation, we articulate a forward-looking perspective on emerging research frontiers, including memory automation, reinforcement learning integration, multimodal memory, multi-agent memory, and trustworthiness issues. We hope this survey serves not only as a reference for existing work, but also as a conceptual foundation for rethinking memory as a first-class primitive in the design of future agentic intelligence.
Abstract:Graph anomaly detection (GAD), which aims to detect outliers in graph-structured data, has received increasing research attention recently. However, existing GAD methods assume identical training and testing distributions, which is rarely valid in practice. In real-world scenarios, unseen but normal samples may emerge during deployment, leading to a normality shift that degrades the performance of GAD models trained on the original data. Through empirical analysis, we reveal that the degradation arises from (1) semantic confusion, where unseen normal samples are misinterpreted as anomalies due to their novel patterns, and (2) aggregation contamination, where the representations of seen normal nodes are distorted by unseen normals through message aggregation. While retraining or fine-tuning GAD models could be a potential solution to the above challenges, the high cost of model retraining and the difficulty of obtaining labeled data often render this approach impractical in real-world applications. To bridge the gap, we proposed a lightweight and plug-and-play Test-time adaptation framework for correcting Unseen Normal pattErns (TUNE) in GAD. To address semantic confusion, a graph aligner is employed to align the shifted data to the original one at the graph attribute level. Moreover, we utilize the minimization of representation-level shift as a supervision signal to train the aligner, which leverages the estimated aggregation contamination as a key indicator of normality shift. Extensive experiments on 10 real-world datasets demonstrate that TUNE significantly enhances the generalizability of pre-trained GAD models to both synthetic and real unseen normal patterns.
Abstract:As deep neural networks power increasingly critical applications, stealthy backdoor attacks, where poisoned training inputs trigger malicious model behaviour while appearing benign, pose a severe security risk. Many existing defences are vulnerable when attackers exploit subtle distance-based anomalies or when clean examples are scarce. To meet this challenge, we introduce TED++, a submanifold-aware framework that effectively detects subtle backdoors that evade existing defences. TED++ begins by constructing a tubular neighbourhood around each class's hidden-feature manifold, estimating its local ``thickness'' from a handful of clean activations. It then applies Locally Adaptive Ranking (LAR) to detect any activation that drifts outside the admissible tube. By aggregating these LAR-adjusted ranks across all layers, TED++ captures how faithfully an input remains on the evolving class submanifolds. Based on such characteristic ``tube-constrained'' behaviour, TED++ flags inputs whose LAR-based ranking sequences deviate significantly. Extensive experiments are conducted on benchmark datasets and tasks, demonstrating that TED++ achieves state-of-the-art detection performance under both adaptive-attack and limited-data scenarios. Remarkably, even with only five held-out examples per class, TED++ still delivers near-perfect detection, achieving gains of up to 14\% in AUROC over the next-best method. The code is publicly available at https://github.com/namle-w/TEDpp.
Abstract:Large Language Model (LLM) watermarking embeds detectable signals into generated text for copyright protection, misuse prevention, and content detection. While prior studies evaluate robustness using watermark removal attacks, these methods are often suboptimal, creating the misconception that effective removal requires large perturbations or powerful adversaries. To bridge the gap, we first formalize the system model for LLM watermark, and characterize two realistic threat models constrained on limited access to the watermark detector. We then analyze how different types of perturbation vary in their attack range, i.e., the number of tokens they can affect with a single edit. We observe that character-level perturbations (e.g., typos, swaps, deletions, homoglyphs) can influence multiple tokens simultaneously by disrupting the tokenization process. We demonstrate that character-level perturbations are significantly more effective for watermark removal under the most restrictive threat model. We further propose guided removal attacks based on the Genetic Algorithm (GA) that uses a reference detector for optimization. Under a practical threat model with limited black-box queries to the watermark detector, our method demonstrates strong removal performance. Experiments confirm the superiority of character-level perturbations and the effectiveness of the GA in removing watermarks under realistic constraints. Additionally, we argue there is an adversarial dilemma when considering potential defenses: any fixed defense can be bypassed by a suitable perturbation strategy. Motivated by this principle, we propose an adaptive compound character-level attack. Experimental results show that this approach can effectively defeat the defenses. Our findings highlight significant vulnerabilities in existing LLM watermark schemes and underline the urgency for the development of new robust mechanisms.