Unlike in natural images, in endoscopy there is no clear notion of an up-right camera orientation. Endoscopic videos therefore often contain large rotational motions, which require keypoint detection and description algorithms to be robust to these conditions. While most classical methods achieve rotation-equivariant detection and invariant description by design, many learning-based approaches learn to be robust only up to a certain degree. At the same time learning-based methods under moderate rotations often outperform classical approaches. In order to address this shortcoming, in this paper we propose RIDE, a learning-based method for rotation-equivariant detection and invariant description. Following recent advancements in group-equivariant learning, RIDE models rotation-equivariance implicitly within its architecture. Trained in a self-supervised manner on a large curation of endoscopic images, RIDE requires no manual labeling of training data. We test RIDE in the context of surgical tissue tracking on the SuPeR dataset as well as in the context of relative pose estimation on a repurposed version of the SCARED dataset. In addition we perform explicit studies showing its robustness to large rotations. Our comparison against recent learning-based and classical approaches shows that RIDE sets a new state-of-the-art performance on matching and relative pose estimation tasks and scores competitively on surgical tissue tracking.
Dynamic reconstruction with neural radiance fields (NeRF) requires accurate camera poses. These are often hard to retrieve with existing structure-from-motion (SfM) pipelines as both camera and scene content can change. We propose DynaMoN that leverages simultaneous localization and mapping (SLAM) jointly with motion masking to handle dynamic scene content. Our robust SLAM-based tracking module significantly accelerates the training process of the dynamic NeRF while improving the quality of synthesized views at the same time. Extensive experimental validation on TUM RGB-D, BONN RGB-D Dynamic and the DyCheck's iPhone dataset, three real-world datasets, shows the advantages of DynaMoN both for camera pose estimation and novel view synthesis.
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US). Longitudinal nodule tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology. This task, however, imposes a substantial cognitive load on clinicians due to the inherent challenge of maintaining a mental 3D reconstruction of the organ. We thus present a framework for automated US image slice localization within a 3D shape representation to ease how such sonographic diagnoses are carried out. Our proposed method learns a common latent embedding space between US image patches and the 3D surface of an individual's thyroid shape, or a statistical aggregation in the form of a statistical shape model (SSM), via contrastive metric learning. Using cross-modality registration and Procrustes analysis, we leverage features from our model to register US slices to a 3D mesh representation of the thyroid shape. We demonstrate that our multi-modal registration framework can localize images on the 3D surface topology of a patient-specific organ and the mean shape of an SSM. Experimental results indicate slice positions can be predicted within an average of 1.2 mm of the ground-truth slice location on the patient-specific 3D anatomy and 4.6 mm on the SSM, exemplifying its usefulness for slice localization during sonographic acquisitions. Code is publically available: \href{https://github.com/vuenc/slice-to-shape}{https://github.com/vuenc/slice-to-shape}
Since real-world training datasets cannot properly sample the long tail of the underlying data distribution, corner cases and rare out-of-domain samples can severely hinder the performance of state-of-the-art models. This problem becomes even more severe for dense tasks, such as 3D semantic segmentation, where points of non-standard objects can be confidently associated to the wrong class. In this work, we focus on improving the generalization to out-of-domain data. We achieve this by augmenting the training set with adversarial examples. First, we learn a set of vectors that deform the objects in an adversarial fashion. To prevent the adversarial examples from being too far from the existing data distribution, we preserve their plausibility through a series of constraints, ensuring sensor-awareness and shapes smoothness. Then, we perform adversarial augmentation by applying the learned sample-independent vectors to the available objects when training a model. We conduct extensive experiments across a variety of scenarios on data from KITTI, Waymo, and CrashD for 3D object detection, and on data from SemanticKITTI, Waymo, and nuScenes for 3D semantic segmentation. Despite training on a standard single dataset, our approach substantially improves the robustness and generalization of both 3D object detection and 3D semantic segmentation methods to out-of-domain data.
6D pose estimation pipelines that rely on RGB-only or RGB-D data show limitations for photometrically challenging objects with e.g. textureless surfaces, reflections or transparency. A supervised learning-based method utilising complementary polarisation information as input modality is proposed to overcome such limitations. This supervised approach is then extended to a self-supervised paradigm by leveraging physical characteristics of polarised light, thus eliminating the need for annotated real data. The methods achieve significant advancements in pose estimation by leveraging geometric information from polarised light and incorporating shape priors and invertible physical constraints.
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects. We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets. Our approach integrates robotic forward-kinematics, external infrared trackers, and improved calibration and annotation procedures. We present a multi-modal sensor rig, mounted on a robotic end-effector, and demonstrate how it is integrated into the creation of highly accurate datasets. Additionally, we introduce a freehand procedure for wider viewpoint coverage. Both approaches yield high-quality 3D data with accurate object and camera pose annotations. Our methods overcome the limitations of existing datasets and provide valuable resources for 3D vision research.
In this paper, we present a novel shape reconstruction method leveraging diffusion model to generate 3D sparse point cloud for the object captured in a single RGB image. Recent methods typically leverage global embedding or local projection-based features as the condition to guide the diffusion model. However, such strategies fail to consistently align the denoised point cloud with the given image, leading to unstable conditioning and inferior performance. In this paper, we present CCD-3DR, which exploits a novel centered diffusion probabilistic model for consistent local feature conditioning. We constrain the noise and sampled point cloud from the diffusion model into a subspace where the point cloud center remains unchanged during the forward diffusion process and reverse process. The stable point cloud center further serves as an anchor to align each point with its corresponding local projection-based features. Extensive experiments on synthetic benchmark ShapeNet-R2N2 demonstrate that CCD-3DR outperforms all competitors by a large margin, with over 40% improvement. We also provide results on real-world dataset Pix3D to thoroughly demonstrate the potential of CCD-3DR in real-world applications. Codes will be released soon
Purpose: Recent advances in Surgical Data Science (SDS) have contributed to an increase in video recordings from hospital environments. While methods such as surgical workflow recognition show potential in increasing the quality of patient care, the quantity of video data has surpassed the scale at which images can be manually anonymized. Existing automated 2D anonymization methods under-perform in Operating Rooms (OR), due to occlusions and obstructions. We propose to anonymize multi-view OR recordings using 3D data from multiple camera streams. Methods: RGB and depth images from multiple cameras are fused into a 3D point cloud representation of the scene. We then detect each individual's face in 3D by regressing a parametric human mesh model onto detected 3D human keypoints and aligning the face mesh with the fused 3D point cloud. The mesh model is rendered into every acquired camera view, replacing each individual's face. Results: Our method shows promise in locating faces at a higher rate than existing approaches. DisguisOR produces geometrically consistent anonymizations for each camera view, enabling more realistic anonymization that is less detrimental to downstream tasks. Conclusion: Frequent obstructions and crowding in operating rooms leaves significant room for improvement for off-the-shelf anonymization methods. DisguisOR addresses privacy on a scene level and has the potential to facilitate further research in SDS.
Controllable scene synthesis aims to create interactive environments for various industrial use cases. Scene graphs provide a highly suitable interface to facilitate these applications by abstracting the scene context in a compact manner. Existing methods, reliant on retrieval from extensive databases or pre-trained shape embeddings, often overlook scene-object and object-object relationships, leading to inconsistent results due to their limited generation capacity. To address this issue, we present CommonScenes, a fully generative model that converts scene graphs into corresponding controllable 3D scenes, which are semantically realistic and conform to commonsense. Our pipeline consists of two branches, one predicting the overall scene layout via a variational auto-encoder and the other generating compatible shapes via latent diffusion, capturing global scene-object and local inter-object relationships while preserving shape diversity. The generated scenes can be manipulated by editing the input scene graph and sampling the noise in the diffusion model. Due to lacking a scene graph dataset offering high-quality object-level meshes with relations, we also construct SG-FRONT, enriching the off-the-shelf indoor dataset 3D-FRONT with additional scene graph labels. Extensive experiments are conducted on SG-FRONT where CommonScenes shows clear advantages over other methods regarding generation consistency, quality, and diversity. Codes and the dataset will be released upon acceptance.
Statistical shape models (SSMs) are an established way to geometrically represent the anatomy of a population with various clinically relevant applications. However, they typically require domain expertise and labor-intensive manual segmentations or landmark annotations to generate. Methods to estimate correspondences for SSMs typically learn with such labels as supervision signals. We address these shortcomings by proposing an unsupervised method that leverages deep geometric features and functional correspondences to learn local and global shape structures across complex anatomies simultaneously. Our pipeline significantly improves unsupervised correspondence estimation for SSMs compared to baseline methods, even on highly irregular surface topologies. We demonstrate this for two different anatomical structures: the thyroid and a multi-chamber heart dataset. Furthermore, our method is robust enough to learn from noisy neural network predictions, enabling scaling SSMs to larger patient populations without manual annotation.