Renmin University of China
Abstract:Large Language Models (LLMs) have recently improved mathematical reasoning through Reinforcement Learning with Verifiable Reward (RLVR). However, existing RLVR algorithms require large query budgets, making annotation costly. We investigate whether fewer but more informative queries can yield similar or superior performance, introducing active learning (AL) into RLVR. We identify that classic AL sampling strategies fail to outperform random selection in this setting, due to ignoring objective uncertainty when only selecting by subjective uncertainty. This work proposes an uncertainty consistency metric to evaluate how well subjective uncertainty aligns with objective uncertainty. In the offline setting, this alignment is measured using the Point-Biserial Correlation Coefficient (PBC). For online training, because of limited sampling and dynamically shifting output distributions, PBC estimation is difficult. Therefore, we introduce a new online variant, computed from normalized advantage and subjective uncertainty. Theoretically, we prove that the online variant is strictly negatively correlated with offline PBC and supports better sample selection. Experiments show our method consistently outperforms random and classic AL baselines, achieving full-dataset performance while training on only 30% of the data, effectively reducing the cost of RLVR for reasoning tasks.
Abstract:Current speech language models generate responses directly without explicit reasoning, leading to errors that cannot be corrected once audio is produced. We introduce \textbf{``Silent Thought, Spoken Answer''} -- a paradigm where speech LLMs generate internal text reasoning alongside spoken responses, with thinking traces informing speech quality. To realize this, we present \method{}, the first diffusion-based speech-text language model supporting both understanding and generation, unifying discrete text and tokenized speech under a single masked diffusion framework. Unlike autoregressive approaches, \method{} jointly generates reasoning traces and speech tokens through iterative denoising, with modality-specific masking schedules. We also construct \dataset{}, the first speech QA dataset with paired text reasoning traces, containing 26K samples totaling 319 hours. Experiments show \method{} achieves state-of-the-art speech-to-speech QA accuracy, outperforming the best baseline by up to 9 points, while attaining the best TTS quality among generative models (6.2\% WER) and preserving language understanding (66.2\% MMLU). Ablations confirm that both the diffusion architecture and thinking traces contribute to these gains.
Abstract:Steady-state visually evoked potentials (SSVEP)-based brain-computer interfaces (BCIs) are widely used due to their high signal-to-noise ratio and user-friendliness. Accurate decoding of SSVEP signals is crucial for interpreting user intentions in BCI applications. However, signal variability across subjects and the costly user-specific annotation limit recognition performance. Therefore, we propose a novel cross-subject domain adaptation method built upon the self-training paradigm. Specifically, a Filter-Bank Euclidean Alignment (FBEA) strategy is designed to exploit frequency information from SSVEP filter banks. Then, we propose a Cross-Subject Self-Training (CSST) framework consisting of two stages: Pre-Training with Adversarial Learning (PTAL), which aligns the source and target distributions, and Dual-Ensemble Self-Training (DEST), which refines pseudo-label quality. Moreover, we introduce a Time-Frequency Augmented Contrastive Learning (TFA-CL) module to enhance feature discriminability across multiple augmented views. Extensive experiments on the Benchmark and BETA datasets demonstrate that our approach achieves state-of-the-art performance across varying signal lengths, highlighting its superiority.
Abstract:Effective clinical history taking is a foundational yet underexplored component of clinical reasoning. While large language models (LLMs) have shown promise on static benchmarks, they often fall short in dynamic, multi-turn diagnostic settings that require iterative questioning and hypothesis refinement. To address this gap, we propose \method{}, a note-driven framework that trains LLMs to conduct structured history taking and diagnosis by learning from widely available medical notes. Instead of relying on scarce and sensitive dialogue data, we convert real-world medical notes into high-quality doctor-patient dialogues using a decision tree-guided generation and refinement pipeline. We then propose a three-stage fine-tuning strategy combining supervised learning, simulated data augmentation, and preference learning. Furthermore, we propose a novel single-turn reasoning paradigm that reframes history taking as a sequence of single-turn reasoning problems. This design enhances interpretability and enables local supervision, dynamic adaptation, and greater sample efficiency. Experimental results show that our method substantially improves clinical reasoning, achieving gains of +16.9 F1 and +21.0 Top-1 diagnostic accuracy over GPT-4o. Our code and dataset can be found at https://github.com/zhentingsheng/Note2Chat.
Abstract:Although generative recommenders demonstrate improved performance with longer sequences, their real-time deployment is hindered by substantial computational costs. To address this challenge, we propose a simple yet effective method for compressing long-term user histories by leveraging inherent item categorical features, thereby preserving user interests while enhancing efficiency. Experiments on two large-scale datasets demonstrate that, compared to the influential HSTU model, our approach achieves up to a 6x reduction in computational cost and up to 39% higher accuracy at comparable cost (i.e., similar sequence length).
Abstract:The rise of AI agents introduces complex safety and security challenges arising from autonomous tool use and environmental interactions. Current guardrail models lack agentic risk awareness and transparency in risk diagnosis. To introduce an agentic guardrail that covers complex and numerous risky behaviors, we first propose a unified three-dimensional taxonomy that orthogonally categorizes agentic risks by their source (where), failure mode (how), and consequence (what). Guided by this structured and hierarchical taxonomy, we introduce a new fine-grained agentic safety benchmark (ATBench) and a Diagnostic Guardrail framework for agent safety and security (AgentDoG). AgentDoG provides fine-grained and contextual monitoring across agent trajectories. More Crucially, AgentDoG can diagnose the root causes of unsafe actions and seemingly safe but unreasonable actions, offering provenance and transparency beyond binary labels to facilitate effective agent alignment. AgentDoG variants are available in three sizes (4B, 7B, and 8B parameters) across Qwen and Llama model families. Extensive experimental results demonstrate that AgentDoG achieves state-of-the-art performance in agentic safety moderation in diverse and complex interactive scenarios. All models and datasets are openly released.
Abstract:We present Information Gain Fine-Tuning (IGFT), a novel approach for training medical conversational AI to conduct effective patient interviews and generate comprehensive History of Present Illness (HPI) without requiring pre-collected human conversations. IGFT combines online Group Relative Policy Optimization (GRPO) with information-theoretic rewards, enabling models to learn from self-generated conversations with simulated patients. Unlike existing approaches that rely on expensive expert-annotated conversations or static datasets, our online RL framework allows models to discover effective questioning strategies through exploration. Our key innovation is an information gain reward function that tracks which clinical entities such as symptoms, temporal patterns, and medical history, are revealed during conversation. Each question's reward is computed based on its expected information gain combined with GPT-4o-mini quality assessments across dimensions including clinical relevance, patient engagement, and specificity. This hybrid approach ensures models learn to ask targeted, clinically appropriate questions that efficiently gather diagnostic information. We fine-tune two models using LoRA: Llama-3.1-8B-Instruct and DeepSeek-R1-Distill-Qwen-7B (a reasoning-optimized model). Training exclusively on Avey data containing concise HPIs, we evaluate generalization to MIMIC data with longer, more elaborate HPIs. DeepSeek-R1-Distill-Qwen-7B (IGFT) achieves F1 scores of 0.408 on Avey (10.9% improvement over base) and 0.289 on MIMIC (12.9% improvement), while Llama-3.1-8B-Instruct (IGFT) reaches 0.384 and 0.336 respectively. Both models outperform OpenAI's model on MIMIC and surpass medical domain-specific baselines like HuatuoGPT and UltraMedical, which were optimized for single-turn medical QA rather than multi-turn conversations.
Abstract:Denoising-based diffusion transformers, despite their strong generation performance, suffer from inefficient training convergence. Existing methods addressing this issue, such as REPA (relying on external representation encoders) or SRA (requiring dual-model setups), inevitably incur heavy computational overhead during training due to external dependencies. To tackle these challenges, this paper proposes \textbf{\namex}, a lightweight intrinsic guidance framework for efficient diffusion training. \name leverages off-the-shelf pre-trained Variational Autoencoder (VAE) features: their reconstruction property ensures inherent encoding of visual priors like rich texture details, structural patterns, and basic semantic information. Specifically, \name aligns the intermediate latent features of diffusion transformers with VAE features via a lightweight projection layer, supervised by a feature alignment loss. This design accelerates training without extra representation encoders or dual-model maintenance, resulting in a simple yet effective pipeline. Extensive experiments demonstrate that \name improves both generation quality and training convergence speed compared to vanilla diffusion transformers, matches or outperforms state-of-the-art acceleration methods, and incurs merely 4\% extra GFLOPs with zero additional cost for external guidance models.
Abstract:Reinforcement Learning from Human Feedback (RLHF) and its variants have emerged as the dominant approaches for aligning Large Language Models with human intent. While empirically effective, the theoretical generalization properties of these methods in high-dimensional settings remain to be explored. To this end, we build the generalization theory on RLHF of LLMs under the linear reward model, through the framework of algorithmic stability. In contrast to the existing works built upon the consistency of maximum likelihood estimations on reward model, our analysis is presented under an end-to-end learning framework, which is consistent with practice. Concretely, we prove that under a key \textbf{feature coverage} condition, the empirical optima of policy model have a generalization bound of order $\mathcal{O}(n^{-\frac{1}{2}})$. Moreover, the results can be extrapolated to parameters obtained by gradient-based learning algorithms, i.e., Gradient Ascent (GA) and Stochastic Gradient Ascent (SGA). Thus, we argue that our results provide new theoretical evidence for the empirically observed generalization of LLMs after RLHF.
Abstract:Large language model (LLM)-powered assistants have recently integrated memory mechanisms that record user preferences, leading to more personalized and user-aligned responses. However, irrelevant personalized memories are often introduced into the context, interfering with the LLM's intent understanding. To comprehensively investigate the dual effects of personalization, we develop RPEval, a benchmark comprising a personalized intent reasoning dataset and a multi-granularity evaluation protocol. RPEval reveals the widespread phenomenon of irrational personalization in existing LLMs and, through error pattern analysis, illustrates its negative impact on user experience. Finally, we introduce RP-Reasoner, which treats memory utilization as a pragmatic reasoning process, enabling the selective integration of personalized information. Experimental results demonstrate that our method significantly outperforms carefully designed baselines on RPEval, and resolves 80% of the bad cases observed in a large-scale commercial personalized assistant, highlighting the potential of pragmatic reasoning to mitigate irrational personalization. Our benchmark is publicly available at https://github.com/XueyangFeng/RPEval.