Abstract:While existing Singing Voice Synthesis systems achieve high-fidelity solo performances, they are constrained by global timbre control, failing to address dynamic multi-singer arrangement and vocal texture within a single song. To address this, we propose Tutti, a unified framework designed for structured multi-singer generation. Specifically, we introduce a Structure-Aware Singer Prompt to enable flexible singer scheduling evolving with musical structure, and propose Complementary Texture Learning via Condition-Guided VAE to capture implicit acoustic textures (e.g., spatial reverberation and spectral fusion) that are complementary to explicit controls. Experiments demonstrate that Tutti excels in precise multi-singer scheduling and significantly enhances the acoustic realism of choral generation, offering a novel paradigm for complex multi-singer arrangement. Audio samples are available at https://annoauth123-ctrl.github.io/Tutii_Demo/.
Abstract:The development of artificial intelligence can be viewed as an evolution of data-driven learning paradigms, with successive shifts in data organization and utilization continuously driving advances in model capability. Current LLM research is dominated by a paradigm that relies heavily on unidirectional scaling of data size, increasingly encountering bottlenecks in data availability, acquisition cost, and training efficiency. In this work, we argue that the development of AGI is entering a new phase of data-model co-evolution, in which models actively guide data management while high-quality data, in turn, amplifies model capabilities. To implement this vision, we propose a tiered data management framework, designed to support the full LLM training lifecycle across heterogeneous learning objectives and cost constraints. Specifically, we introduce an L0-L4 tiered data management framework, ranging from raw uncurated resources to organized and verifiable knowledge. Importantly, LLMs are fully used in data management processes, such as quality scoring and content editing, to refine data across tiers. Each tier is characterized by distinct data properties, management strategies, and training roles, enabling data to be strategically allocated across LLM training stages, including pre-training, mid-training, and alignment. The framework balances data quality, acquisition cost, and marginal training benefit, providing a systematic approach to scalable and sustainable data management. We validate the effectiveness of the proposed framework through empirical studies, in which tiered datasets are constructed from raw corpora and used across multiple training phases. Experimental results demonstrate that tier-aware data utilization significantly improves training efficiency and model performance. To facilitate further research, we release our tiered datasets and processing tools to the community.
Abstract:The rapid advancement of vision-language models has catalyzed the emergence of GUI agents, which hold immense potential for automating complex tasks, from online shopping to flight booking, thereby alleviating the burden of repetitive digital workflows. As a foundational capability, GUI grounding is typically established as a prerequisite for end-to-end task execution. It enables models to precisely locate interface elements, such as text and icons, to perform accurate operations like clicking and typing. Unlike prior works that fine-tune models already possessing strong spatial awareness (e.g., Qwen3-VL), we aim to master the full technical pipeline by starting from a base model with minimal grounding ability, such as POINTS-1.5. We introduce POINTS-GUI-G-8B, which achieves state-of-the-art performance with scores of 59.9 on ScreenSpot-Pro, 66.0 on OSWorld-G, 95.7 on ScreenSpot-v2, and 49.9 on UI-Vision. Our model's success is driven by three key factors: (1) Refined Data Engineering, involving the unification of diverse open-source datasets format alongside sophisticated strategies for augmentation, filtering, and difficulty grading; (2) Improved Training Strategies, including continuous fine-tuning of the vision encoder to enhance perceptual accuracy and maintaining resolution consistency between training and inference; and (3) Reinforcement Learning (RL) with Verifiable Rewards. While RL is traditionally used to bolster reasoning, we demonstrate that it significantly improves precision in the perception-intensive GUI grounding task. Furthermore, GUI grounding provides a natural advantage for RL, as rewards are easily verifiable and highly accurate.
Abstract:Detecting deepfakes has become increasingly challenging as forgery faces synthesized by AI-generated methods, particularly diffusion models, achieve unprecedented quality and resolution. Existing forgery detection approaches relying on spatial and frequency features demonstrate limited efficacy against high-quality, entirely synthesized forgeries. In this paper, we propose a novel detection method grounded in the observation that facial attributes governed by complex physical laws and multiple parameters are inherently difficult to replicate. Specifically, we focus on illumination, particularly the specular reflection component in the Phong illumination model, which poses the greatest replication challenge due to its parametric complexity and nonlinear formulation. We introduce a fast and accurate face texture estimation method based on Retinex theory to enable precise specular reflection separation. Furthermore, drawing from the mathematical formulation of specular reflection, we posit that forgery evidence manifests not only in the specular reflection itself but also in its relationship with corresponding face texture and direct light. To address this issue, we design the Specular-Reflection-Inconsistency-Network (SRI-Net), incorporating a two-stage cross-attention mechanism to capture these correlations and integrate specular reflection related features with image features for robust forgery detection. Experimental results demonstrate that our method achieves superior performance on both traditional deepfake datasets and generative deepfake datasets, particularly those containing diffusion-generated forgery faces.
Abstract:Safety risks of AI models have been widely studied at deployment time, such as jailbreak attacks that elicit harmful outputs. In contrast, safety risks emerging during training remain largely unexplored. Beyond explicit reward hacking that directly manipulates explicit reward functions in reinforcement learning, we study implicit training-time safety risks: harmful behaviors driven by a model's internal incentives and contextual background information. For example, during code-based reinforcement learning, a model may covertly manipulate logged accuracy for self-preservation. We present the first systematic study of this problem, introducing a taxonomy with five risk levels, ten fine-grained risk categories, and three incentive types. Extensive experiments reveal the prevalence and severity of these risks: notably, Llama-3.1-8B-Instruct exhibits risky behaviors in 74.4% of training runs when provided only with background information. We further analyze factors influencing these behaviors and demonstrate that implicit training-time risks also arise in multi-agent training settings. Our results identify an overlooked yet urgent safety challenge in training.
Abstract:In three-way conflict analysis, preference-based conflict situations characterize agents' attitudes towards issues by formally modeling their preferences over pairs of issues. However, existing preference-based conflict models rely exclusively on three qualitative relations, namely, preference, converse, and indifference, to describe agents' attitudes towards issue pairs, which significantly limits their capacity in capturing the essence of conflict. To overcome this limitation, we introduce the concept of an intuitionistic fuzzy preference-based conflict situation that captures agents' attitudes towards issue pairs with finer granularity than that afforded by classical preference-based models. Afterwards, we develop intuitionistic fuzzy preference-based conflict measures within this framework, and construct three-way conflict analysis models for trisecting the set of agent pairs, the agent set, and the issue set. Additionally, relative loss functions built on the proposed conflict functions are employed to calculate thresholds for three-way conflict analysis. Finally, we present adjustment mechanism-based feasible strategies that simultaneously account for both adjustment magnitudes and conflict degrees, together with an algorithm for constructing such feasible strategies, and provide an illustrative example to demonstrate the validity and effectiveness of the proposed model.
Abstract:Nowadays, training and evaluating DeepResearch-generated reports remain challenging due to the lack of verifiable reward signals. Accordingly, rubric-based evaluation has become a common practice. However, existing approaches either rely on coarse, pre-defined rubrics that lack sufficient granularity, or depend on manually constructed query-specific rubrics that are costly and difficult to scale. In this paper, we propose a pipeline to train human-preference-aligned query-specific rubric generators tailored for DeepResearch report generation. We first construct a dataset of DeepResearch-style queries annotated with human preferences over paired reports, and train rubric generators via reinforcement learning with a hybrid reward combining human preference supervision and LLM-based rubric evaluation. To better handle long-horizon reasoning, we further introduce a Multi-agent Markov-state (MaMs) workflow for report generation. We empirically show that our proposed rubric generators deliver more discriminative and better human-aligned supervision than existing rubric design strategies. Moreover, when integrated into the MaMs training framework, DeepResearch systems equipped with our rubric generators consistently outperform all open-source baselines on the DeepResearch Bench and achieve performance comparable to that of leading closed-source models.
Abstract:While LLMs exhibit remarkable fluency, their utility is often compromised by factual hallucinations and a lack of traceable provenance. Existing resources for grounding mitigate this but typically enforce a dichotomy: they offer either structured knowledge without textual context (e.g., knowledge bases) or grounded text with limited scale and linguistic coverage. To bridge this gap, we introduce FactNet, a massive, open-source resource designed to unify 1.7 billion atomic assertions with 3.01 billion auditable evidence pointers derived exclusively from 316 Wikipedia editions. Unlike recent synthetic approaches, FactNet employs a strictly deterministic construction pipeline, ensuring that every evidence unit is recoverable with byte-level precision. Extensive auditing confirms a high grounding precision of 92.1%, even in long-tail languages. Furthermore, we establish FactNet-Bench, a comprehensive evaluation suite for Knowledge Graph Completion, Question Answering, and Fact Checking. FactNet provides the community with a foundational, reproducible resource for training and evaluating trustworthy, verifiable multilingual systems.
Abstract:This work stems from prior complementary observations on the dynamics of Chain-of-Thought (CoT): Large Language Models (LLMs) is shown latent planning of subsequent reasoning prior to CoT emergence, thereby diminishing the significance of explicit CoT; whereas CoT remains critical for tasks requiring multi-step reasoning. To deepen the understanding between LLM's internal states and its verbalized reasoning trajectories, we investigate the latent planning strength of LLMs, through our probing method, Tele-Lens, applying to hidden states across diverse task domains. Our empirical results indicate that LLMs exhibit a myopic horizon, primarily conducting incremental transitions without precise global planning. Leveraging this characteristic, we propose a hypothesis on enhancing uncertainty estimation of CoT, which we validate that a small subset of CoT positions can effectively represent the uncertainty of the entire path. We further underscore the significance of exploiting CoT dynamics, and demonstrate that automatic recognition of CoT bypass can be achieved without performance degradation. Our code, data and models are released at https://github.com/lxucs/tele-lens.
Abstract:Representing artistic style is challenging due to its deep entanglement with semantic content. We propose StyleDecoupler, an information-theoretic framework that leverages a key insight: multi-modal vision models encode both style and content, while uni-modal models suppress style to focus on content-invariant features. By using uni-modal representations as content-only references, we isolate pure style features from multi-modal embeddings through mutual information minimization. StyleDecoupler operates as a plug-and-play module on frozen Vision-Language Models without fine-tuning. We also introduce WeART, a large-scale benchmark of 280K artworks across 152 styles and 1,556 artists. Experiments show state-of-the-art performance on style retrieval across WeART and WikiART, while enabling applications like style relationship mapping and generative model evaluation. We release our method and dataset at this url.