Alert button
Picture for Jie Zhou

Jie Zhou

Alert button

Fingerprint Matching with Localized Deep Representation

Nov 30, 2023
Yongjie Duan, Zhiyu Pan, Jianjiang Feng, Jie Zhou

Compared to minutia-based fingerprint representations, fixed-length representations are attractive due to simple and efficient matching. However, fixed-length fingerprint representations are limited in accuracy when matching fingerprints with different visible areas, which can occur due to different finger poses or acquisition methods. To address this issue, we propose a localized deep representation of fingerprint, named LDRF. By focusing on the discriminative characteristics within local regions, LDRF provides a more robust and accurate fixed-length representation for fingerprints with variable visible areas. LDRF can be adapted to retain information within any valid area, making it highly flexible. The matching scores produced by LDRF also exhibit intuitive statistical characteristics, which led us to propose a matching score normalization technique to mitigate the uncertainty in the cases of very small overlapping area. With this new technique, we can maintain a high level of accuracy and reliability in our fingerprint matching, even as the size of the database grows rapidly. Our experimental results on 21 datasets containing over 140K fingerprints of various finger poses and impression types show that LDRF outperforms other fixed-length representations and is robust to sensing technologies and impression types. Besides, the proposed matching score normalization effectively reduces the false match rate (FMR) in large-scale identification experiments comprising over 5.11 million fingerprints. Specifically, this technique results in a reduction of two orders of magnitude compared to matching without matching score normalization and five orders of magnitude compared to prior works.

* 18 pages, 20 figures 
Viaarxiv icon

SelfOcc: Self-Supervised Vision-Based 3D Occupancy Prediction

Nov 29, 2023
Yuanhui Huang, Wenzhao Zheng, Borui Zhang, Jie Zhou, Jiwen Lu

3D occupancy prediction is an important task for the robustness of vision-centric autonomous driving, which aims to predict whether each point is occupied in the surrounding 3D space. Existing methods usually require 3D occupancy labels to produce meaningful results. However, it is very laborious to annotate the occupancy status of each voxel. In this paper, we propose SelfOcc to explore a self-supervised way to learn 3D occupancy using only video sequences. We first transform the images into the 3D space (e.g., bird's eye view) to obtain 3D representation of the scene. We directly impose constraints on the 3D representations by treating them as signed distance fields. We can then render 2D images of previous and future frames as self-supervision signals to learn the 3D representations. We propose an MVS-embedded strategy to directly optimize the SDF-induced weights with multiple depth proposals. Our SelfOcc outperforms the previous best method SceneRF by 58.7% using a single frame as input on SemanticKITTI and is the first self-supervised work that produces reasonable 3D occupancy for surround cameras on nuScenes. SelfOcc produces high-quality depth and achieves state-of-the-art results on novel depth synthesis, monocular depth estimation, and surround-view depth estimation on the SemanticKITTI, KITTI-2015, and nuScenes, respectively. Code: https://github.com/huang-yh/SelfOcc.

* Code is available at: https://github.com/huang-yh/SelfOcc 
Viaarxiv icon

AKConv: Convolutional Kernel with Arbitrary Sampled Shapes and Arbitrary Number of Parameters

Nov 26, 2023
Xin Zhang, Yingze Song, Tingting Song, Degang Yang, Yichen Ye, Jie Zhou, Liming Zhang

Neural networks based on convolutional operations have achieved remarkable results in the field of deep learning, but there are two inherent flaws in standard convolutional operations. On the one hand, the convolution operation be confined to a local window and cannot capture information from other locations, and its sampled shapes is fixed. On the other hand, the size of the convolutional kernel is fixed to k $\times$ k, which is a fixed square shape, and the number of parameters tends to grow squarely with size. It is obvious that the shape and size of targets are various in different datasets and at different locations. Convolutional kernels with fixed sample shapes and squares do not adapt well to changing targets. In response to the above questions, the Alterable Kernel Convolution (AKConv) is explored in this work, which gives the convolution kernel an arbitrary number of parameters and arbitrary sampled shapes to provide richer options for the trade-off between network overhead and performance. In AKConv, we define initial positions for convolutional kernels of arbitrary size by means of a new coordinate generation algorithm. To adapt to changes for targets, we introduce offsets to adjust the shape of the samples at each position. Moreover, we explore the effect of the neural network by using the AKConv with the same size and different initial sampled shapes. AKConv completes the process of efficient feature extraction by irregular convolutional operations and brings more exploration options for convolutional sampling shapes. Object detection experiments on representative datasets COCO2017, VOC 7+12 and VisDrone-DET2021 fully demonstrate the advantages of AKConv. AKConv can be used as a plug-and-play convolutional operation to replace convolutional operations to improve network performance. The code for the relevant tasks can be found at https://github.com/CV-ZhangXin/AKConv.

* 10 pages, 5 figures 
Viaarxiv icon

LiDAR-HMR: 3D Human Mesh Recovery from LiDAR

Nov 20, 2023
Bohao Fan, Wenzhao Zheng, Jianjiang Feng, Jie Zhou

In recent years, point cloud perception tasks have been garnering increasing attention. This paper presents the first attempt to estimate 3D human body mesh from sparse LiDAR point clouds. We found that the major challenge in estimating human pose and mesh from point clouds lies in the sparsity, noise, and incompletion of LiDAR point clouds. Facing these challenges, we propose an effective sparse-to-dense reconstruction scheme to reconstruct 3D human mesh. This involves estimating a sparse representation of a human (3D human pose) and gradually reconstructing the body mesh. To better leverage the 3D structural information of point clouds, we employ a cascaded graph transformer (graphormer) to introduce point cloud features during sparse-to-dense reconstruction. Experimental results on three publicly available databases demonstrate the effectiveness of the proposed approach. Code: https://github.com/soullessrobot/LiDAR-HMR/

* Code is available at: https://github.com/soullessrobot/LiDAR-HMR/ 
Viaarxiv icon

MAVEN-Arg: Completing the Puzzle of All-in-One Event Understanding Dataset with Event Argument Annotation

Nov 15, 2023
Xiaozhi Wang, Hao Peng, Yong Guan, Kaisheng Zeng, Jianhui Chen, Lei Hou, Xu Han, Yankai Lin, Zhiyuan Liu, Ruobing Xie, Jie Zhou, Juanzi Li

Understanding events in texts is a core objective of natural language understanding, which requires detecting event occurrences, extracting event arguments, and analyzing inter-event relationships. However, due to the annotation challenges brought by task complexity, a large-scale dataset covering the full process of event understanding has long been absent. In this paper, we introduce MAVEN-Arg, which augments MAVEN datasets with event argument annotations, making the first all-in-one dataset supporting event detection, event argument extraction (EAE), and event relation extraction. As an EAE benchmark, MAVEN-Arg offers three main advantages: (1) a comprehensive schema covering 162 event types and 612 argument roles, all with expert-written definitions and examples; (2) a large data scale, containing 98,591 events and 290,613 arguments obtained with laborious human annotation; (3) the exhaustive annotation supporting all task variants of EAE, which annotates both entity and non-entity event arguments in document level. Experiments indicate that MAVEN-Arg is quite challenging for both fine-tuned EAE models and proprietary large language models (LLMs). Furthermore, to demonstrate the benefits of an all-in-one dataset, we preliminarily explore a potential application, future event prediction, with LLMs. MAVEN-Arg and our code can be obtained from https://github.com/THU-KEG/MAVEN-Argument.

* Working in progress 
Viaarxiv icon

Enabling Large Language Models to Learn from Rules

Nov 15, 2023
Wenkai Yang, Yankai Lin, Jie Zhou, Jirong Wen

Large language models (LLMs) have shown incredible performance in completing various real-world tasks. The current knowledge learning paradigm of LLMs is mainly based on learning from examples, in which LLMs learn the internal rule implicitly from a certain number of supervised examples. However, the learning paradigm may not well learn those complicated rules, especially when the training examples are limited. We are inspired that humans can learn the new tasks or knowledge in another way by learning from rules. That is, humans can grasp the new tasks or knowledge quickly and generalize well given only a detailed rule and a few optional examples. Therefore, in this paper, we aim to explore the feasibility of this new learning paradigm, which encodes the rule-based knowledge into LLMs. We propose rule distillation, which first uses the strong in-context abilities of LLMs to extract the knowledge from the textual rules and then explicitly encode the knowledge into LLMs' parameters by learning from the above in-context signals produced inside the model. Our experiments show that making LLMs learn from rules by our method is much more efficient than example-based learning in both the sample size and generalization ability.

* In progress 
Viaarxiv icon

Eval-GCSC: A New Metric for Evaluating ChatGPT's Performance in Chinese Spelling Correction

Nov 14, 2023
Kunting Li, Yong Hu, Shaolei Wang, Hanhan Ma, Liang He, Fandong Meng, Jie Zhou

ChatGPT has demonstrated impressive performance in various downstream tasks. However, in the Chinese Spelling Correction (CSC) task, we observe a discrepancy: while ChatGPT performs well under human evaluation, it scores poorly according to traditional metrics. We believe this inconsistency arises because the traditional metrics are not well-suited for evaluating generative models. Their overly strict length and phonics constraints may lead to underestimating ChatGPT's correction capabilities. To better evaluate generative models in the CSC task, this paper proposes a new evaluation metric: Eval-GCSC. By incorporating word-level and semantic similarity judgments, it relaxes the stringent length and phonics constraints. Experimental results show that Eval-GCSC closely aligns with human evaluations. Under this metric, ChatGPT's performance is comparable to traditional token-level classification models (TCM), demonstrating its potential as a CSC tool. The source code and scripts can be accessed at https://github.com/ktlKTL/Eval-GCSC.

Viaarxiv icon

RECALL: A Benchmark for LLMs Robustness against External Counterfactual Knowledge

Nov 14, 2023
Yi Liu, Lianzhe Huang, Shicheng Li, Sishuo Chen, Hao Zhou, Fandong Meng, Jie Zhou, Xu Sun

LLMs and AI chatbots have improved people's efficiency in various fields. However, the necessary knowledge for answering the question may be beyond the models' knowledge boundaries. To mitigate this issue, many researchers try to introduce external knowledge, such as knowledge graphs and Internet contents, into LLMs for up-to-date information. However, the external information from the Internet may include counterfactual information that will confuse the model and lead to an incorrect response. Thus there is a pressing need for LLMs to possess the ability to distinguish reliable information from external knowledge. Therefore, to evaluate the ability of LLMs to discern the reliability of external knowledge, we create a benchmark from existing knowledge bases. Our benchmark consists of two tasks, Question Answering and Text Generation, and for each task, we provide models with a context containing counterfactual information. Evaluation results show that existing LLMs are susceptible to interference from unreliable external knowledge with counterfactual information, and simple intervention methods make limited contributions to the alleviation of this issue.

Viaarxiv icon