Abstract:Recent advances in AI-powered generative models have enabled the creation of increasingly realistic synthetic images, posing significant risks to information integrity and public trust on social media platforms. While robust detection frameworks and diverse, large-scale datasets are essential to mitigate these risks, existing academic efforts remain limited in scope: current datasets lack the diversity, scale, and realism required for social media contexts, while detection methods struggle with generalization to unseen generative technologies. To bridge this gap, we introduce So-Fake-Set, a comprehensive social media-oriented dataset with over 2 million high-quality images, diverse generative sources, and photorealistic imagery synthesized using 35 state-of-the-art generative models. To rigorously evaluate cross-domain robustness, we establish a novel and large-scale (100K) out-of-domain benchmark (So-Fake-OOD) featuring synthetic imagery from commercial models explicitly excluded from the training distribution, creating a realistic testbed for evaluating real-world performance. Leveraging these resources, we present So-Fake-R1, an advanced vision-language framework that employs reinforcement learning for highly accurate forgery detection, precise localization, and explainable inference through interpretable visual rationales. Extensive experiments show that So-Fake-R1 outperforms the second-best method, with a 1.3% gain in detection accuracy and a 4.5% increase in localization IoU. By integrating a scalable dataset, a challenging OOD benchmark, and an advanced detection framework, this work establishes a new foundation for social media-centric forgery detection research. The code, models, and datasets will be released publicly.
Abstract:The increasing deployment of Large Vision-Language Models (LVLMs) raises safety concerns under potential malicious inputs. However, existing multimodal safety evaluations primarily focus on model vulnerabilities exposed by static image inputs, ignoring the temporal dynamics of video that may induce distinct safety risks. To bridge this gap, we introduce Video-SafetyBench, the first comprehensive benchmark designed to evaluate the safety of LVLMs under video-text attacks. It comprises 2,264 video-text pairs spanning 48 fine-grained unsafe categories, each pairing a synthesized video with either a harmful query, which contains explicit malice, or a benign query, which appears harmless but triggers harmful behavior when interpreted alongside the video. To generate semantically accurate videos for safety evaluation, we design a controllable pipeline that decomposes video semantics into subject images (what is shown) and motion text (how it moves), which jointly guide the synthesis of query-relevant videos. To effectively evaluate uncertain or borderline harmful outputs, we propose RJScore, a novel LLM-based metric that incorporates the confidence of judge models and human-aligned decision threshold calibration. Extensive experiments show that benign-query video composition achieves average attack success rates of 67.2%, revealing consistent vulnerabilities to video-induced attacks. We believe Video-SafetyBench will catalyze future research into video-based safety evaluation and defense strategies.
Abstract:Weakly Supervised Object Localization (WSOL), which aims to localize objects by only using image-level labels, has attracted much attention because of its low annotation cost in real applications. Current studies focus on the Class Activation Map (CAM) of CNN and the self-attention map of transformer to identify the region of objects. However, both CAM and self-attention maps can not learn pixel-level fine-grained information on the foreground objects, which hinders the further advance of WSOL. To address this problem, we initiatively leverage the capability of zero-shot generalization and fine-grained segmentation in Segment Anything Model (SAM) to boost the activation of integral object regions. Further, to alleviate the semantic ambiguity issue accrued in single point prompt-based SAM, we propose an innovative mask prompt to SAM (Pro2SAM) network with grid points for WSOL task. First, we devise a Global Token Transformer (GTFormer) to generate a coarse-grained foreground map as a flexible mask prompt, where the GTFormer jointly embeds patch tokens and novel global tokens to learn foreground semantics. Secondly, we deliver grid points as dense prompts into SAM to maximize the probability of foreground mask, which avoids the lack of objects caused by a single point/box prompt. Finally, we propose a pixel-level similarity metric to come true the mask matching from mask prompt to SAM, where the mask with the highest score is viewed as the final localization map. Experiments show that the proposed Pro2SAM achieves state-of-the-art performance on both CUB-200-2011 and ILSVRC, with 84.03\% and 66.85\% Top-1 Loc, respectively.
Abstract:Current RGB-D methods usually leverage large-scale backbones to improve accuracy but sacrifice efficiency. Meanwhile, several existing lightweight methods are difficult to achieve high-precision performance. To balance the efficiency and performance, we propose a Speed-Accuracy Tradeoff Network (SATNet) for Lightweight RGB-D SOD from three fundamental perspectives: depth quality, modality fusion, and feature representation. Concerning depth quality, we introduce the Depth Anything Model to generate high-quality depth maps,which effectively alleviates the multi-modal gaps in the current datasets. For modality fusion, we propose a Decoupled Attention Module (DAM) to explore the consistency within and between modalities. Here, the multi-modal features are decoupled into dual-view feature vectors to project discriminable information of feature maps. For feature representation, we develop a Dual Information Representation Module (DIRM) with a bi-directional inverted framework to enlarge the limited feature space generated by the lightweight backbones. DIRM models texture features and saliency features to enrich feature space, and employ two-way prediction heads to optimal its parameters through a bi-directional backpropagation. Finally, we design a Dual Feature Aggregation Module (DFAM) in the decoder to aggregate texture and saliency features. Extensive experiments on five public RGB-D SOD datasets indicate that the proposed SATNet excels state-of-the-art (SOTA) CNN-based heavyweight models and achieves a lightweight framework with 5.2 M parameters and 415 FPS.
Abstract:While voice technologies increasingly serve aging populations, current systems exhibit significant performance gaps due to inadequate training data capturing elderly-specific vocal characteristics like presbyphonia and dialectal variations. The limited data available on super-aged individuals in existing elderly speech datasets, coupled with overly simple recording styles and annotation dimensions, exacerbates this issue. To address the critical scarcity of speech data from individuals aged 75 and above, we introduce SeniorTalk, a carefully annotated Chinese spoken dialogue dataset. This dataset contains 55.53 hours of speech from 101 natural conversations involving 202 participants, ensuring a strategic balance across gender, region, and age. Through detailed annotation across multiple dimensions, it can support a wide range of speech tasks. We perform extensive experiments on speaker verification, speaker diarization, speech recognition, and speech editing tasks, offering crucial insights for the development of speech technologies targeting this age group.
Abstract:As speech translation (ST) systems become increasingly prevalent, understanding their vulnerabilities is crucial for ensuring robust and reliable communication. However, limited work has explored this issue in depth. This paper explores methods of compromising these systems through imperceptible audio manipulations. Specifically, we present two innovative approaches: (1) the injection of perturbation into source audio, and (2) the generation of adversarial music designed to guide targeted translation, while also conducting more practical over-the-air attacks in the physical world. Our experiments reveal that carefully crafted audio perturbations can mislead translation models to produce targeted, harmful outputs, while adversarial music achieve this goal more covertly, exploiting the natural imperceptibility of music. These attacks prove effective across multiple languages and translation models, highlighting a systemic vulnerability in current ST architectures. The implications of this research extend beyond immediate security concerns, shedding light on the interpretability and robustness of neural speech processing systems. Our findings underscore the need for advanced defense mechanisms and more resilient architectures in the realm of audio systems. More details and samples can be found at https://adv-st.github.io.
Abstract:Code-switching (CS), the alternation between two or more languages within a single conversation, presents significant challenges for automatic speech recognition (ASR) systems. Existing Mandarin-English code-switching datasets often suffer from limitations in size, spontaneity, and the lack of full-length dialogue recordings with transcriptions, hindering the development of robust ASR models for real-world conversational scenarios. This paper introduces CS-Dialogue, a novel large-scale Mandarin-English code-switching speech dataset comprising 104 hours of spontaneous conversations from 200 speakers. Unlike previous datasets, CS-Dialogue provides full-length dialogue recordings with complete transcriptions, capturing naturalistic code-switching patterns in continuous speech. We describe the data collection and annotation processes, present detailed statistics of the dataset, and establish benchmark ASR performance using state-of-the-art models. Our experiments, using Transformer, Conformer, and Branchformer, demonstrate the challenges of code-switching ASR, and show that existing pre-trained models such as Whisper still have the space to improve. The CS-Dialogue dataset will be made freely available for all academic purposes.
Abstract:This paper delves into the study of 3D point cloud reconstruction from a single image. Our objective is to develop the Consistency Diffusion Model, exploring synergistic 2D and 3D priors in the Bayesian framework to ensure superior consistency in the reconstruction process, a challenging yet critical requirement in this field. Specifically, we introduce a pioneering training framework under diffusion models that brings two key innovations. First, we convert 3D structural priors derived from the initial 3D point cloud as a bound term to increase evidence in the variational Bayesian framework, leveraging these robust intrinsic priors to tightly govern the diffusion training process and bolster consistency in reconstruction. Second, we extract and incorporate 2D priors from the single input image, projecting them onto the 3D point cloud to enrich the guidance for diffusion training. Our framework not only sidesteps potential model learning shifts that may arise from directly imposing additional constraints during training but also precisely transposes the 2D priors into the 3D domain. Extensive experimental evaluations reveal that our approach sets new benchmarks in both synthetic and real-world datasets. The code is included with the submission.
Abstract:Self-supervised learning (SSL) methods via joint embedding architectures have proven remarkably effective at capturing semantically rich representations with strong clustering properties, magically in the absence of label supervision. Despite this, few of them have explored leveraging these untapped properties to improve themselves. In this paper, we provide an evidence through various metrics that the encoder's output $encoding$ exhibits superior and more stable clustering properties compared to other components. Building on this insight, we propose a novel positive-feedback SSL method, termed Representation Soft Assignment (ReSA), which leverages the model's clustering properties to promote learning in a self-guided manner. Extensive experiments on standard SSL benchmarks reveal that models pretrained with ReSA outperform other state-of-the-art SSL methods by a significant margin. Finally, we analyze how ReSA facilitates better clustering properties, demonstrating that it effectively enhances clustering performance at both fine-grained and coarse-grained levels, shaping representations that are inherently more structured and semantically meaningful.
Abstract:3D open-world classification is a challenging yet essential task in dynamic and unstructured real-world scenarios, requiring both open-category and open-pose recognition. To address these challenges, recent wisdom often takes sophisticated 2D pre-trained models to provide enriched and stable representations. However, these methods largely rely on how 3D objects can be projected into 2D space, which is unfortunately not well solved, and thus significantly limits their performance. Unlike these present efforts, in this paper we make a pioneering exploration of 3D generative models for 3D open-world classification. Drawing on abundant prior knowledge from 3D generative models, we additionally craft a rotation-invariant feature extractor. This innovative synergy endows our pipeline with the advantages of being training-free, open-category, and pose-invariant, thus well suited to 3D open-world classification. Extensive experiments on benchmark datasets demonstrate the potential of generative models in 3D open-world classification, achieving state-of-the-art performance on ModelNet10 and McGill with 32.0% and 8.7% overall accuracy improvement, respectively.