Abstract:The increasing deployment of Large Vision-Language Models (LVLMs) raises safety concerns under potential malicious inputs. However, existing multimodal safety evaluations primarily focus on model vulnerabilities exposed by static image inputs, ignoring the temporal dynamics of video that may induce distinct safety risks. To bridge this gap, we introduce Video-SafetyBench, the first comprehensive benchmark designed to evaluate the safety of LVLMs under video-text attacks. It comprises 2,264 video-text pairs spanning 48 fine-grained unsafe categories, each pairing a synthesized video with either a harmful query, which contains explicit malice, or a benign query, which appears harmless but triggers harmful behavior when interpreted alongside the video. To generate semantically accurate videos for safety evaluation, we design a controllable pipeline that decomposes video semantics into subject images (what is shown) and motion text (how it moves), which jointly guide the synthesis of query-relevant videos. To effectively evaluate uncertain or borderline harmful outputs, we propose RJScore, a novel LLM-based metric that incorporates the confidence of judge models and human-aligned decision threshold calibration. Extensive experiments show that benign-query video composition achieves average attack success rates of 67.2%, revealing consistent vulnerabilities to video-induced attacks. We believe Video-SafetyBench will catalyze future research into video-based safety evaluation and defense strategies.
Abstract:The rapid evolution of multimodal foundation models has led to significant advancements in cross-modal understanding and generation across diverse modalities, including text, images, audio, and video. However, these models remain susceptible to jailbreak attacks, which can bypass built-in safety mechanisms and induce the production of potentially harmful content. Consequently, understanding the methods of jailbreak attacks and existing defense mechanisms is essential to ensure the safe deployment of multimodal generative models in real-world scenarios, particularly in security-sensitive applications. To provide comprehensive insight into this topic, this survey reviews jailbreak and defense in multimodal generative models. First, given the generalized lifecycle of multimodal jailbreak, we systematically explore attacks and corresponding defense strategies across four levels: input, encoder, generator, and output. Based on this analysis, we present a detailed taxonomy of attack methods, defense mechanisms, and evaluation frameworks specific to multimodal generative models. Additionally, we cover a wide range of input-output configurations, including modalities such as Any-to-Text, Any-to-Vision, and Any-to-Any within generative systems. Finally, we highlight current research challenges and propose potential directions for future research.The open-source repository corresponding to this work can be found at https://github.com/liuxuannan/Awesome-Multimodal-Jailbreak.
Abstract:Current multimodal misinformation detection (MMD) methods often assume a single source and type of forgery for each sample, which is insufficient for real-world scenarios where multiple forgery sources coexist. The lack of a benchmark for mixed-source misinformation has hindered progress in this field. To address this, we introduce MMFakeBench, the first comprehensive benchmark for mixed-source MMD. MMFakeBench includes 3 critical sources: textual veracity distortion, visual veracity distortion, and cross-modal consistency distortion, along with 12 sub-categories of misinformation forgery types. We further conduct an extensive evaluation of 6 prevalent detection methods and 15 large vision-language models (LVLMs) on MMFakeBench under a zero-shot setting. The results indicate that current methods struggle under this challenging and realistic mixed-source MMD setting. Additionally, we propose an innovative unified framework, which integrates rationales, actions, and tool-use capabilities of LVLM agents, significantly enhancing accuracy and generalization. We believe this study will catalyze future research into more realistic mixed-source multimodal misinformation and provide a fair evaluation of misinformation detection methods.